cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192631 Numerators of the Diophantus-Dujella rational Diophantine quintuple: 1 + the product of any two distinct terms is a square.

Original entry on oeis.org

1, 33, 17, 105, 549120
Offset: 1

Views

Author

Jonathan Sondow, Jul 07 2011

Keywords

Comments

Denominators are A192632. Diophantus found the rational Diophantine quadruple 1/16, 33/16, 17/4, 105/16. Dujella added a fifth rational number 549120/10201.
It is unknown whether this rational Diophantine quintuple can be extended to a sextuple. Herrmann, Pethoe, and Zimmer proved that the sequence is finite, but no bound on its length is known.
See A030063 for additional comments, references, and links.

Examples

			1/16, 33/16, 17/4, 105/16, 549120/10201.
1 + (1/16)*(33/16) = (17/16)^2.
1 + (33/16)*(549120/10201) = (1069/101)^2.
		

References

  • E. Herrmann, A. Pethoe and H. G. Zimmer, On Fermat's quadruple equations, Abh. Math. Sem. Univ. Hamburg 69 (1999), 283-291.

Crossrefs