A030063 Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is a square.
0, 1, 3, 8, 120
Offset: 0
References
- M. Gardner, "Mathematical Magic Show", M. Gardner, Alfred Knopf, New York, 1977, pp. 210, 221-222.
- Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001, pp. 93-94.
Links
- A. Baker and H. Davenport, The Equations 3x^2-2=y^2 and 8x^2-7=z^2, Quart. J. Math. Oxford 20 (1969).
- Nicolae Ciprian Bonciocat, Mihai Cipu, and Maurice Mignotte, There is no Diophantine D(-1)--quadruple, arXiv:2010.09200 [math.NT], 2020.
- Andrej Dujella, Diophantine m-tuples
- Z. Franusic, On the Extension of the Diophantine Pair {1,3} in Z[surd d], J. Int. Seq. 13 (2010) # 10.9.6
- Zrinka Franušić, On the extension of the Diophantine pair {1, 3} in Z[√d], Journées Arithmétiques 2011. [Dead link]
- Yasutsugu Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, Journal of Number Theory, Volume 129, Issue 7, July 2009, Pages 1678-1697.
- Martin Gardner, Mathematical diversions, Scientific American 216 (1967), March 1967, p. 124; April 1967, p. 119.
Extensions
Definition clarified by Jonathan Sondow, Jul 06 2011
Comments