A030063
Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is a square.
Original entry on oeis.org
0, 1, 3, 8, 120
Offset: 0
Graham Lewis (grahaml(AT)levygee.com.uk)
- M. Gardner, "Mathematical Magic Show", M. Gardner, Alfred Knopf, New York, 1977, pp. 210, 221-222.
- Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001, pp. 93-94.
- A. Baker and H. Davenport, The Equations 3x^2-2=y^2 and 8x^2-7=z^2, Quart. J. Math. Oxford 20 (1969).
- Nicolae Ciprian Bonciocat, Mihai Cipu, and Maurice Mignotte, There is no Diophantine D(-1)--quadruple, arXiv:2010.09200 [math.NT], 2020.
- Andrej Dujella, Diophantine m-tuples
- Z. Franusic, On the Extension of the Diophantine Pair {1,3} in Z[surd d], J. Int. Seq. 13 (2010) # 10.9.6
- Zrinka Franušić, On the extension of the Diophantine pair {1, 3} in Z[√d], Journées Arithmétiques 2011. [Dead link]
- Yasutsugu Fujita, Any Diophantine quintuple contains a regular Diophantine quadruple, Journal of Number Theory, Volume 129, Issue 7, July 2009, Pages 1678-1697.
- Martin Gardner, Mathematical diversions, Scientific American 216 (1967), March 1967, p. 124; April 1967, p. 119.
A192629
Numerators of the Fermat-Euler rational Diophantine m-tuple.
Original entry on oeis.org
0, 1, 3, 8, 120, 777480
Offset: 0
0/1, 1/1, 3/1, 8/1, 120/1, 777480/8288641.
1 + 1*(777480/8288641) = (3011/2879)^2.
- A. Dujella, Rational Diophantine m-tuples
- E. Herrmann, A. Pethoe and H. G. Zimmer, On Fermat's quadruple equations, Abh. Math. Sem. Univ. Hamburg 69 (1999), 283-291.
- Michael Stoll, Diagonal genus 5 curves, elliptic curves over Q(t), and rational diophantine quintuples, Acta Arith. 190 (2019), 239-261.
A192631
Numerators of the Diophantus-Dujella rational Diophantine quintuple: 1 + the product of any two distinct terms is a square.
Original entry on oeis.org
1, 33, 17, 105, 549120
Offset: 1
1/16, 33/16, 17/4, 105/16, 549120/10201.
1 + (1/16)*(33/16) = (17/16)^2.
1 + (33/16)*(549120/10201) = (1069/101)^2.
- E. Herrmann, A. Pethoe and H. G. Zimmer, On Fermat's quadruple equations, Abh. Math. Sem. Univ. Hamburg 69 (1999), 283-291.
A192632
Denominators of the Diophantus-Dujella rational Diophantine quintuple: 1 + the product of any two distinct terms is a square.
Original entry on oeis.org
16, 16, 4, 16, 10201
Offset: 1
1/16, 33/16, 17/4, 105/16, 549120/10201.
1 + (1/16)*(33/16) = (17/16)^2.
1 + (33/16)*(549120/10201) = (1069/101)^2.
Showing 1-4 of 4 results.
Comments