A192636 Powerful sums of two powerful numbers.
8, 9, 16, 25, 32, 36, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000, 1024, 1089, 1125, 1152, 1156, 1225
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Charles R Greathouse IV)
- Tim D. Browning and K. Van Valckenborgh, Sums of three squareful numbers, Experimental Mathematics, Vol. 21, No. 2 (2012), pp. 204-211; arXiv preprint, arXiv:1106.4472 [math.NT], 2011.
Crossrefs
Programs
-
Mathematica
With[{m = 1225}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Intersection[pow, Plus @@@ Tuples[pow, {2}]]] (* Amiram Eldar, Feb 12 2023 *)
-
PARI
isPowerful(n)=if(n>3,vecmin(factor(n)[,2])>1,n==1) sumset(a,b)={ my(c=vectorsmall(#a*#b)); for(i=1,#a, for(j=1,#b, c[(i-1)*#b+j]=a[i]+b[j] ) ); vecsort(c,,8) }; selfsum(a)={ my(c=vectorsmall(binomial(#a+1,2)),k); for(i=1,#a, for(j=i,#a, c[k++]=a[i]+a[j] ) ); vecsort(c,,8) }; list(lim)={ my(v=select(isPowerful, vector(floor(lim),i,i))); select(n->n<=lim && isPowerful(n), Vec(selfsum(v))) };
Formula
Extensions
Corrected (on the advice of Donovan Johnson) by Charles R Greathouse IV, Sep 25 2012
Comments