cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192636 Powerful sums of two powerful numbers.

Original entry on oeis.org

8, 9, 16, 25, 32, 36, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000, 1024, 1089, 1125, 1152, 1156, 1225
Offset: 1

Views

Author

Keywords

Comments

Browning & Valckenborgh conjecture that a(n) ~ kn^2 with k approximately 0.139485255. See their Conjecture 1 and equation (14). Their Theorems 1 and 2 establish upper and lower asymptotic bounds.

Crossrefs

Programs

  • Mathematica
    With[{m = 1225}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Intersection[pow, Plus @@@ Tuples[pow, {2}]]] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    isPowerful(n)=if(n>3,vecmin(factor(n)[,2])>1,n==1)
    sumset(a,b)={
      my(c=vectorsmall(#a*#b));
      for(i=1,#a,
        for(j=1,#b,
          c[(i-1)*#b+j]=a[i]+b[j]
        )
      );
      vecsort(c,,8)
    }; selfsum(a)={
      my(c=vectorsmall(binomial(#a+1,2)),k);
      for(i=1,#a,
        for(j=i,#a,
          c[k++]=a[i]+a[j]
        )
      );
      vecsort(c,,8)
    };
    list(lim)={
      my(v=select(isPowerful, vector(floor(lim),i,i)));
      select(n->n<=lim && isPowerful(n), Vec(selfsum(v)))
    };

Formula

Numbers k such that there exists some a, b, c with A001694(a) + A001694(b) = k = A001694(c).

Extensions

Corrected (on the advice of Donovan Johnson) by Charles R Greathouse IV, Sep 25 2012