cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192656 Partial sums of the Floor-Sqrt transform of central binomial coefficients.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 61, 119, 232, 452, 881, 1720, 3364, 6588, 12921, 25375, 49891, 98198, 193461, 381464, 752740, 1486400, 2936951, 5806346, 11485043, 22728290, 44997518, 89121654, 176578446, 349977599, 693873777, 1376096873, 2729841361, 5416740769, 10750880013, 21342682400
Offset: 0

Views

Author

Emanuele Munarini, Jul 07 2011

Keywords

Crossrefs

Partial sums of A192655.

Programs

  • Mathematica
    Table[Sum[Floor[Sqrt[Binomial[2k,k]]],{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(floor(sqrt(binomial(2*k,k))),k,0,n),n,0,24);

Formula

a(n) = Sum_{k=0..n} floor(sqrt(binomial(2*k,k))).

A192658 Binomial convolution of the Floor-Sqrt transform of central binomial coefficients.

Original entry on oeis.org

1, 2, 6, 20, 72, 270, 1040, 4036, 15714, 61226, 238778, 930716, 3628520, 14143922, 55134174, 214941488, 838158510, 3269630046, 12761106790, 49834920864, 194743761948, 761543265544, 2980128724806, 11670402459630, 45734346816026, 179348093549914, 703781965002650
Offset: 0

Views

Author

Emanuele Munarini, Jul 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Floor[Sqrt[Binomial[2k,k]]]Floor[Sqrt[Binomial[2n-2k,n-k]]],{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)*floor(sqrt(binomial(2*k,k)))*floor(sqrt(binomial(2*n-2*k,n-k))),k,0,n),n,0,24);

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * floor(sqrt(binomial(2*k,k))) * floor(sqrt(binomial(2*n-2*k,n-k))).
Showing 1-2 of 2 results.