A192666 E.g.f. satisfies: A(x) = exp(-1)*Sum_{n>=0} (1 + x*A(x))^(n^2)/n!.
1, 2, 21, 444, 14415, 637268, 35822203, 2450234160, 197807272289, 18431380399184, 1948783220129813, 230702141895062720, 30251527782113610991, 4355262112839582661824, 683368350046603022039867, 116136704024677305164141056
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 2*x + 21*x^2/2! + 444*x^3/3! + 14415*x^4/4! +... where A(x) = G(x*A(x)) and A(x/G(x)) = G(x) = e.g.f. of A014507: G(x) = 1 + 2*x + 13*x^2/2! + 162*x^3/3! + 3075*x^4/4! + 80978*x^5/5! +...
Crossrefs
Cf. A014507.
Programs
-
PARI
/* A(x) = 1/e*Sum_{n>=0}(1+x*A(x))^(n^2)/n! (requires precision): */ {a(n)=local(A=1+x);for(i=1,n,A=exp(-1)*sum(m=0,3*n+10,(1+x*A +x*O(x^n))^(m^2)/m!));polcoeff(round(serlaplace(A+x*O(x^n))),n)}
-
PARI
/* E.g.f. Series_Reversion(x/G(x))/x; G(x) = e.g.f. of A014507: */ {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)} {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)} {A014507(n)=sum(k=0, n, Stirling1(n, k)*Bell(2*k))} {a(n)=local(G=sum(m=0,n,A014507(m)*x^m/m!)+x*O(x^n));n!*polcoeff(serreverse(x/G)/x,n)}
Formula
E.g.f.: A(x) = Series_Reversion(x/G(x))/x, where G(x) = A(x/G(x)) = e.g.f. of A014507.
Comments