A192679 Floor-Sqrt transform of ordered Bell numbers (A000670).
1, 1, 1, 3, 8, 23, 68, 217, 738, 2662, 10111, 40281, 167605, 725850, 3262107, 15175084, 72908536, 361068922, 1839982245, 9633358049, 51746379547, 284824200163, 1604632175859, 9243292234736, 54390064543757, 326645626694244, 2000556362576213, 12485902607285611
Offset: 0
Keywords
Programs
-
Mathematica
FSFromExpSeries[f_,x_,n_] := Map[Floor[Sqrt[#]]&,CoefficientList[Series[f,{x,0,n}],x]Table[k!,{k,0,n}]] FSFromExpSeries[1/(2-Exp[x]),x,40] (* second program: *) Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; a[n_] := Fubini[n, 1] // Sqrt // Floor; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Mar 30 2016 *)
Formula
a(n) = floor(sqrt(orderedBell(n))).