A192681 Floor-sqrt transform of Lah partition numbers (A000262).
1, 1, 1, 3, 8, 22, 63, 193, 627, 2143, 7677, 28706, 111669, 450529, 1880164, 8097765, 35922614, 163849371, 767224522, 3682984346, 18102428784, 91000840873, 467393250911, 2450438244585, 13102651355735, 71398380128514, 396202573696587
Offset: 0
Keywords
Programs
-
Maple
A000262 := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(1) fi: (2*n-1)*procname(n-1) - (n-1)*(n-2)*procname(n-2) end proc: A192681 := proc(n) floor(sqrt(A000262(n))) ; end proc: # R. J. Mathar, Jul 13 2011
-
Mathematica
FSFromExpSeries[f_,x_,n_] := Map[Floor[Sqrt[#]]&,CoefficientList[Series[f,{x,0,n}],x]Table[k!,{k,0,n}]] FSFromExpSeries[Exp[x/(1-x)],x,60]
Formula
a(n) = floor(sqrt(A000262(n))).
Extensions
All terms replaced by R. J. Mathar, Jul 13 2011