A192718 Elements of A192628 which are congruent to 7 (mod 8) (equivalently, 7 (mod 16)).
7, 55, 71, 87, 103, 119, 183, 263, 279, 343, 375, 391, 439, 455, 519, 551, 567, 583, 615, 631, 647, 695, 711, 727, 759, 775, 791, 823, 855, 871, 887, 903, 951, 967, 1015, 1047, 1079, 1095, 1111, 1127, 1159, 1175, 1191, 1223, 1239, 1271, 1303, 1319, 1367
Offset: 1
Keywords
References
- J. Cooper and A. Riasanovsky, On the reciprocal of the binary generating function for the sum-of-divisors, Journal of Integer Sequences (accepted).
- J. Cooper, D. Eichhorn, and K. O'Bryant, Reciprocals of binary power series, International Journal of Number Theory, 2 no. 4 (2006), 499-522.
Links
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8
Programs
-
Sage
prec = 2^12 R = PowerSeriesRing(GF(2), 'q', default_prec = prec) q = R.gen() sigma = lambda x : 1 if x == 0 else sum(Integer(x).divisors()) SigmaSeries = sum([sigma(m)*q^m for m in range(prec)]) SigmaBarSeries = 1/SigmaSeries SigmaBarList = SigmaBarSeries.exponents() SigmaBar7Mod8 = [m for m in SigmaBarList if mod(m, 8) == 7] print(SigmaBar7Mod8)
Comments