cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192729 G.f. satisfies: A(x) = 1/(1 - x*A(x)^2/(1 - x^2*A(x)^2/(1 - x^3*A(x)^2/(1 - x^4*A(x)^2/(1 - ...))))), a recursive continued fraction.

Original entry on oeis.org

1, 1, 3, 13, 63, 329, 1808, 10299, 60271, 360198, 2189111, 13488379, 84066176, 529037390, 3357014851, 21455604032, 137993279809, 892448240335, 5800266701499, 37864046563210, 248158092634265, 1632254493141021, 10771183395497445
Offset: 0

Views

Author

Paul D. Hanna, Jul 08 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 63*x^4 + 329*x^5 + 1808*x^6 +...
which satisfies A(x) = P(x)/Q(x) where
P(x) = 1 - x^2*A(x)^2/(1-x) + x^6*A(x)^4/((1-x)*(1-x^2)) - x^12*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^20*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...
Q(x) = 1 - x*A(x)^2/(1-x) + x^4*A(x)^4/((1-x)*(1-x^2)) - x^9*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^16*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...
Explicitly, the above series begin:
P(x) = 1 - x^2 - 3*x^3 - 10*x^4 - 42*x^5 - 202*x^6 - 1060*x^7 - 5862*x^8 - 33592*x^9 - 197585*x^10 - 1185867*x^11 - 7233049*x^12 +...
Q(x) = 1 - x - 3*x^2 - 10*x^3 - 41*x^4 - 198*x^5 - 1041*x^6 - 5766*x^7 - 33074*x^8 - 194674*x^9 - 1168988*x^10 - 7132869*x^11 - 44097821*x^12 +...
		

Crossrefs

Programs

  • PARI
    /* As a recursive continued fraction: */
    {a(n)=local(A=1+x,CF);for(i=1,n,CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*A^2*CF+x*O(x^n)));A=CF);polcoeff(A,n)}
    
  • PARI
    /* By Ramanujan's continued fraction identity: */
    {a(n)=local(A=1+x,P,Q);for(i=1,n,
    P=sum(m=0,sqrtint(n),x^(m*(m+1))/prod(k=1,m,1-x^k)*(-A^2+x*O(x^n))^m);
    Q=sum(m=0,sqrtint(n),x^(m^2)/prod(k=1,m,1-x^k)*(-A^2+x*O(x^n))^m);A=P/Q);polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} x^(n*(n+1)) * (-A(x)^2)^n / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} x^(n^2) * (-A(x)^2)^n / Product_{k=1..n} (1-x^k),
due to Ramanujan's continued fraction identity.
a(n) ~ c * d^n / n^(3/2), where d = 7.0656326355634513691927118582399... and c = 0.2386935555822482686868972746... - Vaclav Kotesovec, Aug 25 2017