A192760 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 4, 9, 18, 33, 58, 99, 166, 275, 452, 739, 1204, 1957, 3176, 5149, 8342, 13509, 21870, 35399, 57290, 92711, 150024, 242759, 392808, 635593, 1028428, 1664049, 2692506, 4356585, 7049122, 11405739, 18454894, 29860667, 48315596, 78176299
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
Mathematica
q = x^2; s = x + 1; z = 40; p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A001594 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192760 *)
Formula
a(n) = 2*A000045(n+3)-n-4. G.f. x*(-1-x+x^2) / ( (x^2+x-1)*(x-1)^2 ). - R. J. Mathar, Nov 09 2012
a(n) = Sum_{1..n} C(n-i+2,i+1) + C(n-i,i). - Wesley Ivan Hurt, Sep 13 2017
Comments