A192762 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 6, 13, 26, 47, 82, 139, 232, 383, 628, 1025, 1668, 2709, 4394, 7121, 11534, 18675, 30230, 48927, 79180, 128131, 207336, 335493, 542856, 878377, 1421262, 2299669, 3720962, 6020663, 9741658, 15762355, 25504048, 41266439, 66770524
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
Mathematica
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 4; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A022319 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192762 *)
Formula
a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). G.f.: x*(3*x^2-3*x-1) / ((x-1)^2*(x^2+x-1)). [Colin Barker, Dec 08 2012]
Comments