A192763 Symmetric square array read by antidiagonals up.
1, 2, 2, 1, -2, 1, 1, 2, 2, 1, 0, -2, -3, -2, 0, 1, 2, 1, 1, 2, 1, 0, -2, 2, 0, 2, -2, 0, 0, 2, -3, 1, 1, -3, 2, 0, 0, -2, 1, -2, -5, -2, 1, -2, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, -2, -3, 0, 2, 6, 2, 0, -3, -2, 0, 0, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 0, -1, -2, 2, -2, 1, -2, -7, -2, 1, -2, 2, -2, -1, 0, 2, -3, 1, -5, -3, 0, 0, -3, -5, 1, -3, 2, 0, 1, -2, 1, 0, 0, -2, 2, 0, 2, -2, 0, 0, 1, -2, 1
Offset: 1
Examples
The array starts: 1..2..1..1..0..1..0..0..0..1... 2.-2..2.-2..2.-2..2.-2..2.-2... 1..2.-3..1..2.-3..1..2.-3..1... 1.-2..1..0..1.-2..1..0..1.-2... 0..2..2..1.-5..0..2..2..1.-5... 1.-2.-3.-2..0..6..1.-2.-3.-2... 0..2..1..1..2..1.-7..0..2..1... 0.-2..2..0..2.-2..0..0..0.-2... 0..2.-3..1..1.-3..2..0..0..0... 1.-2..1.-2.-5.-2..1.-2..0..10...
Links
Programs
-
Mathematica
Clear[t]; t[1, 1] = 1; t[2, 1] = t[1, 2] = 2; t[n_Integer, k_Integer] := t[n, k] = Which[n == 1, (-t[n, k - 1] - Sum[t[i, k], {i, 2, k - 1}])/(k + 1) + t[n, k - 1], k == 1, (-t[n - 1, k] - Sum[t[n, i], {i, 2, n - 1}])/(n + 1) + t[n - 1, k], n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], True, -Sum[t[k - i, n], {i, 1, n - 1}]]; nn = 12; MatrixForm[Array[t, {nn, nn}]]; a = Flatten[Table[Reverse[Range[n]], {n, nn}]]; b = Flatten[Table[Range[n], {n, nn}]]; Table[t[a[[i]], b[[i]]], {i, 1, nn*(nn + 1)/2}] (* Mats Granvik, Olivier Gérard, Jul 10 2011 *) T[ n_, k_] := If[ n < 1 || k < 1, 0, If[ k > n, T[ k, n], T[n, k] = If[ k == 1, If[ n < 3, n, (-T[ n - 1, 1] - Sum[ T[ n, i], {i, 2, n - 1}]) / (n + 1) + T[ n - 1, 1]], If[ n > k, T[ k, Mod[ n, k, 1]], - Sum[ T[ n, i], {i, n - 1}]]]]]; (* Michael Somos, Jul 19 2011 *)
-
PARI
{T(n, k) = if( n<1 || k<1, 0, if( k>n, T(k, n), if( k==1, if( n<3, n, (-T(n-1, 1) -sum( i=2, n-1, T(n, i))) / (n+1) + T(n-1, 1)), if( n>k, T(k, (n-1)%k+1), -sum( i=1,n-1, T(n, i))))))}; /* Michael Somos, Jul 19 2011 */
Formula
T(1,1)=1 or 3, T(1,2)=2, T(2,1)=2, T(1,k)=(-T(n,k-1)-Sum_(i=2)^(k-1) of T(i,k))/(k+1)+T(n,k-1), T(n,1)=(-T(n-1,k)-Sum_(i=2)^(n-1) of T(n,i))/(n+1)+T(n-1,k), n>=k: -Sum_(i=1)^(k-1) of T(n-i,k), n
Comments