cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A192777 Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+3x+1. See Comments.

Original entry on oeis.org

1, 0, 1, 1, 2, 8, 14, 55, 121, 392, 989, 2912, 7797, 22104, 60553, 169289, 467622, 1300888, 3603914, 10008543, 27755249, 77034176, 213702153, 593005504, 1645265209, 4565154816, 12666317073, 35144684065, 97512548090, 270561677224
Offset: 1

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+5x+1
F5(x)=x^4+3x^2+1 -> 7x^2+4x+2, so that
A192777=(1,0,1,1,2,...), A192778=(0,1,0,5,4,...), A192779=(0,0,1,1,7,...)
		

Crossrefs

Programs

  • Mathematica
    q = x^3; s = x^2 + 3 x + 1; z = 40;
    p[n_, x_] := Fibonacci[n, x];
    Table[Expand[p[n, x]], {n, 1, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192777 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192778 *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
      (* A192779 *)

Formula

a(n)=a(n-1)+6*a(n-2)-a(n-3)-6*a(n-4)+a(n-5)+a(n-6).
G.f.: -x*(1-5*x^2+x^4-x+x^3) / ( (x^2-x-1)*(x^4+2*x^3-3*x^2-2*x+1) ). - R. J. Mathar, May 06 2014

A192778 Coefficient of x in the reduction of the n-th Fibonacci polynomial by x^3->x^2+3x+1.

Original entry on oeis.org

0, 1, 0, 5, 4, 28, 48, 183, 424, 1315, 3420, 9864, 26756, 75237, 207128, 577345, 1597624, 4439764, 12307388, 34166643, 94769936, 262998791, 729644824, 2024614928, 5617339496, 15586328073, 43245649904, 119991232893, 332929027020
Offset: 1

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first five polynomials p(n,x) and their reductions:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+5x+1
F5(x)=x^4+3x^2+1 -> 7x^2+4x+2, so that
A192777=(1,0,1,1,2,...), A192778=(0,1,0,5,4,...), A192779=(0,0,1,1,7,...)
		

Crossrefs

Formula

a(n) = a(n-1)+6*a(n-2)-a(n-3)-6*a(n-4)+a(n-5)+a(n-6).
G.f.: x^2*(x^2+x-1)/((x^2-x-1)*(x^4+2*x^3-3*x^2-2*x+1)). [Colin Barker, Nov 23 2012]

A192779 Coefficient of x^2 in the reduction of the n-th Fibonacci polynomial by x^3->x^2+3x+1.

Original entry on oeis.org

0, 0, 1, 1, 7, 12, 47, 107, 337, 868, 2520, 6808, 19192, 52756, 147185, 407069, 1131599, 3136292, 8707655, 24151335, 67025633, 185946904, 515971328, 1431563056, 3972149312, 11021051864, 30579529249, 84846231017, 235416993159, 653192251196
Offset: 1

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first five polynomials p(n,x) and their reductions:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+5x+1
F5(x)=x^4+3x^2+1 -> 7x^2+4x+2, so that
A192777=(1,0,1,1,2,...), A192778=(0,1,0,5,4,...), A192779=(0,0,1,1,7,...)
		

Crossrefs

Programs

  • Mathematica
    (See A192777.)
    LinearRecurrence[{1,6,-1,-6,1,1},{0,0,1,1,7,12}, 30] (* Harvey P. Dale, Oct 29 2018 *)

Formula

a(n) = a(n-1)+6*a(n-2)-a(n-3)-6*a(n-4)+a(n-5)+a(n-6).
G.f.: -x^3/((x^2-x-1)*(x^4+2*x^3-3*x^2-2*x+1)). [Colin Barker, Nov 23 2012]

A192773 Coefficient of x in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2x+1.

Original entry on oeis.org

0, 1, 0, 4, 3, 18, 30, 98, 219, 596, 1464, 3783, 9540, 24328, 61740, 156985, 398904, 1013772, 2576475, 6547574, 16640382, 42288806, 107473443, 273129468, 694130016, 1764047839, 4483130424, 11393354512, 28954911624, 73585574049
Offset: 1

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+4x+1
F5(x)=x^4+3x^2+1 -> 6x^2+3x+2, so that
A192772=(1,0,1,1,2,...), A192773=(0,1,0,4,3,...), A192774=(0,0,1,1,6,...)
		

Crossrefs

Programs

  • Mathematica
    (See A192772.)
    LinearRecurrence[{1,5,-1,-5,1,1},{0,1,0,4,3,18},40] (* Harvey P. Dale, Aug 07 2025 *)

Formula

a(n) = a(n-1)+5*a(n-2)-a(n-3)-5*a(n-4)+a(n-5)+a(n-6).
G.f.: x^2*(x^2+x-1)/(x^6+x^5-5*x^4-x^3+5*x^2+x-1). [Colin Barker, Nov 23 2012]

A192774 Coefficient of x^2 in the reduction of the n-th Fibonacci polynomial by x^3->x^2+2x+1.

Original entry on oeis.org

0, 0, 1, 1, 6, 10, 34, 74, 206, 499, 1301, 3264, 8348, 21152, 53828, 136720, 347533, 883157, 2244462, 5704094, 14496130, 36840606, 93625542, 237939591, 604694601, 1536764208, 3905506648, 9925401280, 25224262440, 64104575344
Offset: 1

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first five polynomials p(n,x) and their reductions are as follows:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+4x+1
F5(x)=x^4+3x^2+1 -> 6x^2+3x+2, so that
A192772=(1,0,1,1,2,...), A192773=(0,1,0,4,3,...), A192774=(0,0,1,1,6,...)
		

Crossrefs

Programs

  • Mathematica
    (See A192772.)
    LinearRecurrence[{1,5,-1,-5,1,1},{0,0,1,1,6,10},30] (* Harvey P. Dale, Jun 25 2017 *)

Formula

a(n) = a(n-1)+5*a(n-2)-a(n-3)-5*a(n-4)+a(n-5)+a(n-6).
G.f.: -x^3/(x^6+x^5-5*x^4-x^3+5*x^2+x-1). [Colin Barker, Nov 23 2012]
Showing 1-5 of 5 results.