cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192780 Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+1. See Comments.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 8, 19, 34, 71, 137, 272, 537, 1056, 2089, 4112, 8121, 16009, 31586, 62301, 122888, 242411, 478146, 943183, 1860433, 3669792, 7238769, 14278720, 28165265, 55556896, 109587889, 216165713, 426394178, 841076725, 1659052040
Offset: 1

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first five polynomials p(n,x) and their reductions:
F1(x)=1 -> 1
F2(x)=x -> x
F3(x)=x^2+1 -> x^2+1
F4(x)=x^3+2x -> x^2+2x+1
F5(x)=x^4+3x^2+1 -> 4x^2+1x+2, so that
A192777=(1,0,1,1,2,...), A192778=(0,1,0,2,1,...), A192779=(0,0,1,1,4,...)
		

Crossrefs

Programs

  • Mathematica
    q = x^3; s = x^2 + 1; z = 40;
    p[n_, x_] := Fibonacci[n, x];
    Table[Expand[p[n, x]], {n, 1, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192780 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192781 *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
      (* A192782 *)
    LinearRecurrence[{1,3,-1,-3,1,1},{1,0,1,1,2,5},40] (* Harvey P. Dale, Nov 07 2021 *)

Formula

a(n)=a(n-1)+3*a(n-2)-a(n-3)-3*a(n-4)+a(n-5)+a(n-6).
G.f.: -x*(x-1)*(1+x)*(x^2+x-1) / ( -1+x+3*x^2-x^3-3*x^4+x^5+x^6 ). - R. J. Mathar, May 06 2014