cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192785 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n)*(1 + x^(2*n)*A(x)^2).

Original entry on oeis.org

1, 1, 2, 5, 11, 29, 75, 203, 557, 1561, 4427, 12706, 36819, 107576, 316579, 937471, 2791487, 8352973, 25104573, 75749240, 229379444, 696851166, 2123304184, 6487295518, 19870096689, 61001089214, 187673207413, 578532522637, 1786712575547
Offset: 0

Views

Author

Paul D. Hanna, Jul 10 2011

Keywords

Comments

Related q-series identity of Lebesgue:
Product_{n>=1} (1 + q^n)*(1 + z*q^(2*n)) = 1 + Sum_{n>=1} q^(n*(n+1)/2) * Product_{k=1..n} (1 + z*q^k)/(1 - x^k); here q=x, z=A(x)^2.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 29*x^5 + 75*x^6 + ...
The g.f. A = A(x) satisfies the following relations:
A = (1+x)*(1+x^2*A^2)* (1+x^2)*(1+x^4*A^2)* (1+x^3)*(1+x^6*A^2)* ...
A = 1 + x*(1+x*A^2)/(1-x) + x^3*(1+x*A^2)*(1+x^2*A^2)/((1-x)*(1-x^2)) + x^6*(1+x*A^2)*(1+x^2*A^2)*(1+x^3*A^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k)*(1 + x^(2*k)*A[x]^2), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Mar 04 2024 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(-r*s*(1 + s^2) * Log[r]^2 * ((s + s^3)*Derivative[0, 1][QPochhammer][-1, r] + r*QPochhammer[-1, r]^2 * Derivative[0, 1][QPochhammer][-s^2, r^2]))/ (2*Pi * QPochhammer[-1, r]*(4*s^2*Log[r]^2 + (1 + s^2)^2 * QPolyGamma[1, Log[-s^2]/(2*Log[r]), r^2]))]} /. FindRoot[{(QPochhammer[-1, r]*QPochhammer[-s^2, r^2])/(2 + 2*s^2) == s, 1 + 3*s^2 + (1 + s^2)*((Log[1 - r^2] + QPolyGamma[0, Log[-s^2]/(2*Log[r]), r^2])/Log[r]) == 0}, {r, 1/3}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Mar 04 2024 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = prod(m=1, n, (1 + x^m)*(1 + x^(2*m)*A^2 +x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = 1 + sum(m=1, sqrtint(2*n), x^(m*(m+1)/2)*prod(k=1, m, (1 + A^2*x^k)/(1 - x^k+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2)*Product_{k=1..n} (1 + x^k*A(x)^2)/(1 - x^k) due to a Lebesgue identity.
From Vaclav Kotesovec, Mar 04 2024: (Start)
Let A(x) = y, then 2*y*(1 + y^2) = QPochhammer(-1, x) * QPochhammer(-y^2, x^2).
a(n) ~ c * d^n / n^(3/2), where
d = 3.25215123067662173854186425074452291189580485719079882122325713176...,
c = 1.30862302149248708183423553797270804891358016970005788341511105232...
Radius of convergence:
r = 1/d = 0.307488775604062671485504670197489134974315527740973676344144395...
A(r) = s = 2.80682163771231540175973628784430270489737819467327067575665055...
(End)
The values r and A(r) given above also satisfy A(r) = 1 / sqrt( Sum_{n>=1} 2*r^(2*n)/(1 + r^(2*n)*A(r)^2) ). - Paul D. Hanna, Mar 06 2024