cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192804 Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+x+1. See Comments.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 53, 97, 178, 327, 601, 1105, 2032, 3737, 6873, 12641, 23250, 42763, 78653, 144665, 266080, 489397, 900141, 1655617, 3045154, 5600911, 10301681, 18947745, 34850336, 64099761, 117897841, 216847937, 398845538
Offset: 0

Views

Author

Clark Kimberling, Jul 10 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.
This sequence provides the most-significant place-values in the construction of a tribonacci code. - James Dow Allen, Jul 12 2021

Examples

			The first five polynomials p(n,x) and their reductions:
  p(1,x)=1 -> 1,
  p(2,x)=x+1 -> x+1,
  p(3,x)=x^2+x+1 -> x^2+x+1,
  p(4,x)=x^3+x^2+x+1 -> 2x^2+2x+2,
  p(5,x)=x^4+x^3+x^2+x+1 -> 4x^2+4*x+3, so that
A192804=(1,1,1,2,3,...), A000073=(0,1,1,2,4,...), A008937=(0,0,1,2,4,...).
		

Crossrefs

Programs

  • Mathematica
    q = x^3; s = x^2 + x + 1; z = 40;
    p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192804 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A000073 *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
      (* A008937 *)

Formula

a(n) = 2*a(n-1) - a(n-4).
a(n) = a(n-1) + a(n-2) + a(n-3) - 1. - Alzhekeyev Ascar M, Feb 05 2012
G.f.: ( 1-x-x^2 ) / ( (x-1)*(x^3+x^2+x-1) ). - R. J. Mathar, May 06 2014
a(n) - a(n-1) = A000073(n-1). - R. J. Mathar, May 06 2014