cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192805 Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+2x+1. See Comments.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 25, 53, 113, 242, 519, 1114, 2392, 5137, 11033, 23697, 50898, 109323, 234814, 504356, 1083305, 2326829, 4997793, 10734754, 23057167, 49524466, 106373552, 228479649, 490751217, 1054084065, 2264066146, 4862985491
Offset: 0

Views

Author

Clark Kimberling, Jul 10 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.

Examples

			The first five polynomials p(n,x) and their reductions:
p(1,x)=1 -> 1
p(2,x)=x+1 -> x+1
p(3,x)=x^2+x+1 -> x^2+x+1
p(4,x)=x^3+x^2+x+1 -> 2x^2+3x+2
p(5,x)=x^4+x^3+x^2+x+1 -> 5x^2+6*x+3, so that
A192805=(1,1,1,2,3,...), A002478=(0,1,1,3,6,...), A077864=(0,0,1,2,5,...).
		

Crossrefs

Programs

  • Mathematica
    q = x^3; s = x^2 + 2 x + 1; z = 40;
    p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192805 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A002478  *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
      (* A077864 *)

Formula

a(n)=2*a(n-1)+a(n-2)-a(n-3)-a(n-4).
G.f.: -(1+x)*(2*x-1) / ( (x-1)*(x^3+2*x^2+x-1) ). - R. J. Mathar, May 06 2014
a(n)-a(n-1) = A002478(n-3). - R. J. Mathar, May 06 2014