A192805 Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+2x+1. See Comments.
1, 1, 1, 2, 3, 6, 12, 25, 53, 113, 242, 519, 1114, 2392, 5137, 11033, 23697, 50898, 109323, 234814, 504356, 1083305, 2326829, 4997793, 10734754, 23057167, 49524466, 106373552, 228479649, 490751217, 1054084065, 2264066146, 4862985491
Offset: 0
Keywords
Examples
The first five polynomials p(n,x) and their reductions: p(1,x)=1 -> 1 p(2,x)=x+1 -> x+1 p(3,x)=x^2+x+1 -> x^2+x+1 p(4,x)=x^3+x^2+x+1 -> 2x^2+3x+2 p(5,x)=x^4+x^3+x^2+x+1 -> 5x^2+6*x+3, so that A192805=(1,1,1,2,3,...), A002478=(0,1,1,3,6,...), A077864=(0,0,1,2,5,...).
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1,-1).
Programs
-
Mathematica
q = x^3; s = x^2 + 2 x + 1; z = 40; p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x]; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192805 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A002478 *) u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A077864 *)
Formula
a(n)=2*a(n-1)+a(n-2)-a(n-3)-a(n-4).
G.f.: -(1+x)*(2*x-1) / ( (x-1)*(x^3+2*x^2+x-1) ). - R. J. Mathar, May 06 2014
a(n)-a(n-1) = A002478(n-3). - R. J. Mathar, May 06 2014
Comments