A192869 Thin primes: odd primes p such that p+1 is a prime (or 1) times a power of two.
3, 5, 7, 11, 13, 19, 23, 31, 37, 43, 47, 61, 67, 73, 79, 103, 127, 151, 157, 163, 191, 193, 211, 223, 271, 277, 283, 313, 331, 367, 383, 397, 421, 457, 463, 487, 523, 541, 547, 607, 613, 631, 661, 673, 691, 733, 751, 757, 787, 823, 877, 907, 991, 997, 1051
Offset: 1
Keywords
References
- D. R. Heath-Brown, "Artin's conjecture for primitive roots", Quarterly Journal of Mathematics 37:1 (1986) pp. 27-38.
- N. M. Timofeev, "The Hardy-Ramanujan and Halasz inequalities for shifted primes", Mathematical Notes 57:5 (1995), pp. 522-535.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Kevin Broughan and Zhou Qizhi, Flat primes and thin primes, Bulletin of the Australian Mathematical Society 82:2 (2010), pp. 282-292.
- Qizhi Zhou, Multiply perfect numbers of low abundancy, PhD thesis (2010)
Crossrefs
Subsequence of A192868.
Programs
-
Mathematica
onePrimeQ[n_] := n == 1 || PrimeQ[n]; Select[Prime[Range[2, 1000]], onePrimeQ[(# + 1)/2^IntegerExponent[# + 1, 2]] &] (* T. D. Noe, Mar 06 2012 *)
-
PARI
is(n)=n%2&&isprime(n)&&(isprime((n+1)>>valuation(n+1,2)) || n+1==1<
Formula
a(n) >> n (log n)^2.
Comments