A192877 Coefficient of x in the reduction by (x^2->x+1) of the polynomial p(n,x) given in Comments.
0, 1, 4, 14, 47, 152, 496, 1601, 5192, 16786, 54351, 175836, 569100, 1841513, 5959484, 19284934, 62407951, 201955408, 653543000, 2114907025, 6843987040, 22147600586, 71671151919, 231932702004, 750550018452, 2428830833977
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,6,-5,-6,4).
Programs
-
GAP
a:=[0,1,4,14,47];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] -5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)) )); // G. C. Greubel, Jan 08 2019 -
Mathematica
(See A192876.) LinearRecurrence[{2,6,-5,-6,4}, {0,1,4,14,47}, 30] (* G. C. Greubel, Jan 08 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)))) \\ G. C. Greubel, Jan 08 2019
-
Sage
(x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
Formula
a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: x*(1+2*x) / ( (1-x)*(1+x-x^2)*(1-2*x-4*x^2) ). - R. J. Mathar, May 06 2014
Comments