cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192880 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.

Original entry on oeis.org

1, 0, 3, 7, 34, 123, 495, 1912, 7501, 29253, 114342, 446545, 1744489, 6814224, 26618619, 103979239, 406172770, 1586623227, 6197795703, 24210320296, 94572284197, 369425778645, 1443080391558, 5637075481729, 22019992977457
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2011

Keywords

Comments

The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x, and p(n,x) = 2*x*p(n-1,x) + (x^2)*p(n-1,x). See A192872.

Crossrefs

Programs

  • GAP
    a:=[1,0,3,7];; for n in [5..30] do a[n]:=2*a[n-1]+7*a[n-2] +2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jan 08 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)*(1-3*x-x^2)/(1-2*x-7*x^2-2*x^3+x^4) )); // G. C. Greubel, Jan 08 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 25;
    p[0, x_]:= 1; p[1, x_]:= x;
    p[n_, x_]:= 2 p[n-1, x]*x + p[n-2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192880 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192882 *)
    FindLinearRecurrence[u1]
    FindLinearRecurrence[u2]
    (* Additional programs *)
    LinearRecurrence[{2,7,2,-1}, {1,0,3,7}, 30] (* G. C. Greubel, Jan 08 2019 *)
    Table[Fibonacci[n-1]*LucasL[n, 2]/2, {n,0,30}] (* G. C. Greubel, Jul 29 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-3*x-x^2)/(1-2*x-7*x^2-2*x^3+x^4)) \\ G. C. Greubel, Jan 08 2019
    
  • SageMath
    ((1+x)*(1-3*x-x^2)/(1-2*x-7*x^2-2*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
    
  • SageMath
    [fibonacci(n-1)*lucas_number2(n, 2, -1)/2 for n in (0..30)] # G. C. Greubel, Jul 29 2019
    

Formula

a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: (1+x)*(1-3*x-x^2) / ( 1-2*x-7*x^2-2*x^3+x^4 ). - R. J. Mathar, May 07 2014
a(n) = Fibonacci(n-1)*Pell-Lucas(n)/2, where Pell-Lucas(n) = A002203(n). - G. C. Greubel, Jul 29 2019