A191749 Numbers not the sum of a smaller number and its prime factors (with multiplicity).
1, 2, 3, 5, 7, 9, 12, 13, 16, 18, 20, 21, 25, 27, 28, 30, 32, 37, 43, 44, 45, 48, 49, 50, 52, 57, 60, 61, 64, 66, 67, 68, 70, 73, 75, 77, 78, 80, 81, 85, 87, 90, 91, 92, 97, 100, 101, 102, 104, 108, 110, 112, 115, 117, 126, 129, 130, 132, 133, 135, 137, 139, 144, 145
Offset: 1
Keywords
Examples
3 is in the sequence since neither 1 + sopfr(1) nor 2 + sopfr(2) add up to 3 (instead these equal 2 and 4 respectively). Because 2 + sopfr(2) = 4, the number 4 is not in this sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
pfAddSeq[start_, max_] := NestWhileList[# + Plus@@Times@@@FactorInteger@# &, start, # < max &]; Complement[Range[200], Flatten[Table[Drop[pfAddSeq[n, 200], 1], {n, 2, 200}]]] (* corrected by Amiram Eldar, Aug 14 2025 *)
-
PARI
upto(n) = { v = vector(n); for(i = 2, n, c = i + sopfr(i); if(c <= n, v[c] = 1)); select(x -> x == 0, v, 1)} sopfr(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i,1] * f[i,2])} \\ David A. Corneth, Aug 14 2025
Extensions
2 inserted by and more terms from David A. Corneth, Aug 14 2025
Comments