A192904 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.
1, 0, 1, 5, 16, 49, 153, 480, 1505, 4717, 14784, 46337, 145233, 455200, 1426721, 4471733, 14015632, 43928817, 137684905, 431542080, 1352570689, 4239325789, 13287204352, 41645725825, 130529073953, 409113752000, 1282274186177
Offset: 0
Examples
The first six polynomials and reductions: 1 -> 1 x -> x x + x^3 -> 1 + 3*x x^2 + x^3 + x^5 -> 5 + 8*x x^2 + 2*x^4 + x^5 + x^7 -> 16 + 25*x x^3 + 2*x^4 + 3*x^6 + x^7 + x^9 -> 49 + 79*x, so that A192904 = (1,0,1,5,16,49,...) and A192905 = (0,1,3,8,25,79,...)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,1,1).
Programs
-
GAP
a:=[1,0,1,5];; for n in [5..40] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 10 2019
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4) )); // G. C. Greubel, Jan 10 2019 -
Mathematica
(* To obtain general results, delete the next line. *) u = 1; v = 1; a = 1; b = 1; c = 0; d = 1; e = 1; f = 0; q = x^2; s = u*x + v; z = 24; p[0, x_] := a; p[1, x_] := b*x + c; p[n_, x_] := d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f; Table[Expand[p[n, x]], {n, 0, 8}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192904 *) u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192905 *) Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *) Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *) LinearRecurrence[{3,0,1,1}, {1,0,1,5}, 40] (* G. C. Greubel, Jan 10 2019 *)
-
PARI
my(x='x+O('x^40)); Vec((1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4)) \\ G. C. Greubel, Jan 10 2019
-
Sage
((1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 10 2019
Formula
a(n) = 3*a(n-1) + a(n-3) + a(n-4).
G.f.: (1-x)*(1-2*x-x^2)/(1-3*x-x^3-x^4). - Colin Barker, Aug 31 2012
Comments