cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192906 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

1, 1, 2, 7, 23, 72, 225, 705, 2210, 6927, 21711, 68048, 213281, 668481, 2095202, 6566935, 20582567, 64511384, 202196289, 633738369, 1986309058, 6225634847, 19512839199, 61158565024
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x + 1.

Crossrefs

Programs

  • GAP
    a:=[1,1,2,7];; for n in [5..30] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 11 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-2*x-x^2)/(1-3*x-x^3-x^4) )); // G. C. Greubel, Jan 11 2019
    
  • Mathematica
    (* To obtain very general results, delete the next line. *)
    u = 1; v = 1; a = 1; b = 1; c = 1; d = 1; e = 1; f = 0;
    q = x^2; s = u*x + v; z = 24;
    p[0, x_] := a;
    p[1, x_] := b*x + c; p[n_, x_] :=  d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f; Table[Expand[p[n, x]], {n, 0, 8}] (* p(0,x), p(1,x), ... p(5,x) *)
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]    (* A192904 *)
    u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]    (* A192905 *)
    Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)
    Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)
    LinearRecurrence[{3,0,1,1}, {1,1,2,7}, 30] (* G. C. Greubel, Jan 11 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x-x^2)/(1-3*x-x^3-x^4)) \\ G. C. Greubel, Jan 11 2019
    
  • Sage
    ((1-2*x-x^2)/(1-3*x-x^3-x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 11 2019
    

Formula

a(n) = 3*a(n-1) + a(n-3) + a(n-4).
G.f.: (1-2*x-x^2)/(1-3*x-x^3-x^4). - Colin Barker, Aug 31 2012