cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192910 Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

0, 1, 4, 13, 42, 133, 418, 1311, 4110, 12883, 40380, 126563, 396684, 1243317, 3896896, 12213937, 38281814, 119985657, 376067806, 1178699171, 3694364986, 11579148423, 36292212248, 113749700903, 356522616120, 1117439209033, 3502359540252
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x) + 1, with p(0,x) = 1, p(1,x) = x + 1.

Crossrefs

Programs

  • GAP
    a:=[0,1,4,13,42];; for n in [6..30] do a[n]:=4*a[n-1]-3*a[n-2] + a[n-3]-a[n-5]; od; a; # G. C. Greubel, Jan 12 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+x)*(1-x+x^2)/((1-x)*(1-3*x-x^3-x^4)) )); // G. C. Greubel, Jan 12 2019
    
  • Mathematica
    (See A192909.)
    LinearRecurrence[{4,-3,1,0,-1}, {0,1,4,13,42}, 30] (* G. C. Greubel, Jan 12 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1+x)*(1-x+x^2)/((1-x)*(1-3*x -x^3-x^4)))) \\ G. C. Greubel, Jan 12 2019
    
  • Sage
    (x*(1+x)*(1-x+x^2)/((1-x)*(1-3*x-x^3-x^4))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
    

Formula

a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3) - a(n-5).
G.f.: x*(1+x)*(1-x+x^2)/((1-x)*(1-3*x-x^3-x^4)). - R. J. Mathar, Jul 13 2011