cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A192917 Coefficient of x in the reduction by (x^2 -> x+1) of the polynomial C(n)*x^n, where C=A022095.

Original entry on oeis.org

0, 5, 6, 22, 51, 140, 360, 949, 2478, 6494, 16995, 44500, 116496, 304997, 798486, 2090470, 5472915, 14328284, 37511928, 98207509, 257110590, 673124270, 1762262211, 4613662372, 12078724896, 31622512325, 82788812070, 216743923894, 567442959603, 1485584954924
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

See A192872.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> F(2*n+1) +2*F(n)^2 -(-1)^n); # G. C. Greubel, Jul 29 2019
  • Magma
    F:=Fibonacci; [F(2*n+1) +2*F(n)^2 -(-1)^n: n in [0..30]]; // G. C. Greubel, Jul 29 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 28;
    p[0, x_]:= 1; p[1, x_]:= 5 x;
    p[n_, x_]:= p[n-1, x]*x + p[n-2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192914 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* see A192878 *)
    (* Second program *)
    With[{F=Fibonacci}, Table[F[2*n+1] +2*F[n]^2 -(-1)^n, {n,0,30}]] (* G. C. Greubel, Jul 28 2019 *)
  • PARI
    a(n) = round((2^(-1-n)*(-9*(-1)^n*2^(1+n)-(3-sqrt(5))^n*(-9+sqrt(5))+(3+sqrt(5))^n*(9+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    concat(0, Vec((-x*(-5+4*x))/((1+x)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Oct 01 2016
    
  • PARI
    vector(30, n, n--; f=fibonacci; f(2*n+1) +2*f(n)^2 -(-1)^n) \\ G. C. Greubel, Jul 29 2019
    
  • Sage
    f=fibonacci; [f(2*n+1) +2*f(n)^2 -(-1)^n for n in (0..30)] # G. C. Greubel, Jul 29 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: x*(5 -4*x)/((1+x)*(1-3*x+x^2)). - R. J. Mathar, May 08 2014
a(n) = -3*a(n-1) +a(n-2) = 9*(-1)^(n+1). - R. J. Mathar, May 08 2014
a(n) = (2^(-1-n)*(-9*(-1)^n*2^(1+n)-(3-sqrt(5))^n*(-9+sqrt(5))+(3+sqrt(5))^n*(9+sqrt(5))))/5. - Colin Barker, Oct 01 2016
a(n) = Fibonacci(2*n+1) + 2*Fibonacci(n)^2 - (-1)^n. - G. C. Greubel, Jul 29 2019
Showing 1-1 of 1 results.