cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192922 Constant term in the reduction by (x^2->x+1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

1, 0, 1, 2, 5, 11, 25, 55, 122, 268, 590, 1295, 2844, 6240, 13693, 30039, 65900, 144559, 317108, 695595, 1525829, 3346965, 7341695, 16104238, 35325142, 77486710, 169969295, 372832346
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = p(n-1,x) +(x^2)*p(n-2,x), with p(0,x)=1, p(1,x)=x. For discussions of polynomial reduction, see A192232, A192744, and A192872.

Crossrefs

Programs

  • GAP
    a:=[1,0,1,2];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2] -3*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Feb 06 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x^2-2*x+3*x^3)/(1-2*x-2*x^2+3*x^3+x^4) )); // G. C. Greubel, Feb 06 2019
    
  • Mathematica
    q = x^2; s = x + 1; z = 28;
    p[0, x_] := 1; p[1, x_] := x;
    p[n_, x_] := p[n - 1, x] + p[n - 2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192922 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]  (* A192923 *)
    LinearRecurrence[{2,2,-3,-1}, {1,0,1,2}, 30] (* G. C. Greubel, Feb 06 2019 *)
  • PARI
    my(x='x+O(x^30)); Vec((1-x^2-2*x+3*x^3)/(1-2*x-2*x^2+3*x^3+x^4)) \\ G. C. Greubel, Feb 06 2019
    
  • Sage
    ((1-x^2-2*x+3*x^3)/(1-2*x-2*x^2+3*x^3+x^4)).series(x, 30).coefficients(x, sparse=False)
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) - a(n-4).
G.f.: (1-x^2-2*x+3*x^3)/(1-2*x-2*x^2+3*x^3+x^4). - R. J. Mathar, May 08 2014