cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192923 Coefficient of x in the reduction by (x^2->x+1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

0, 1, 2, 4, 9, 19, 42, 91, 200, 437, 959, 2101, 4609, 10106, 22168, 48620, 106649, 233928, 513126, 1125541, 2468901, 5415578, 11879209, 26057330, 57157443, 125376341, 275016369, 603255761
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = p(n-1,x) +(x^2)*p(n-2,x), with p(0,x)=1, p(1,x)=x. For discussions of polynomial reduction, see A192232, A192744, and A192872.

Crossrefs

Programs

  • GAP
    a:=[0,1,2,4];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]-3*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Feb 06 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4) )); // G. C. Greubel, Feb 06 2019
    
  • Mathematica
    (See A192922.)
    CoefficientList[Series[x*(1-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4), {x, 0, 30}], x] (* G. C. Greubel, Jun 26 2017 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4) )) \\ G. C. Greubel, Jun 26 2017
    
  • Sage
    (x*(1-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 06 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) - a(n-4).
G.f.: x*(1-2*x^2) / ( 1-2*x-2*x^2+3*x^3+x^4 ). - R. J. Mathar, May 08 2014