A192923 Coefficient of x in the reduction by (x^2->x+1) of the polynomial p(n,x) defined below at Comments.
0, 1, 2, 4, 9, 19, 42, 91, 200, 437, 959, 2101, 4609, 10106, 22168, 48620, 106649, 233928, 513126, 1125541, 2468901, 5415578, 11879209, 26057330, 57157443, 125376341, 275016369, 603255761
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-3,-1).
Programs
-
GAP
a:=[0,1,2,4];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]-3*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Feb 06 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4) )); // G. C. Greubel, Feb 06 2019 -
Mathematica
(See A192922.) CoefficientList[Series[x*(1-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4), {x, 0, 30}], x] (* G. C. Greubel, Jun 26 2017 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x*(1-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4) )) \\ G. C. Greubel, Jun 26 2017
-
Sage
(x*(1-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 06 2019
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) - a(n-4).
G.f.: x*(1-2*x^2) / ( 1-2*x-2*x^2+3*x^3+x^4 ). - R. J. Mathar, May 08 2014
Comments