A192946
G.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^3 - 1)^n.
Original entry on oeis.org
1, 1, 3, 21, 181, 1746, 18039, 195214, 2184381, 25067856, 293420578, 3489516381, 42044519283, 512146618088, 6296546349018, 78031090301868, 973723814391957, 12224652295383324, 154299365902579044, 1956876044969421604, 24924046596321581940
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 181*x^4 + 1746*x^5 + 18039*x^6 +...
where (A(x) - 1)*(2 - A(x)^3) = x
and A(x - 3*x^2 - 3*x^3 - x^4) = 1+x.
Related expansions.
(A(x)^3-1) = 3*x + 12*x^2 + 82*x^3 + 705*x^4 + 6792*x^5 + 70122*x^6 +...
(A(x)^3-1)^2 = 9*x^2 + 72*x^3 + 636*x^4 + 6198*x^5 + 64396*x^6 +...
(A(x)^3-1)^3 = 27*x^3 + 324*x^4 + 3510*x^5 + 38475*x^6 +...
(A(x)^3-1)^4 = 81*x^4 + 1296*x^5 + 16632*x^6 + 203148*x^7 +...
Also,
A(x)^3 = 1 + 3*x + 12*x^2 + 82*x^3 + 705*x^4 + 6792*x^5 + 70122*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 124*x^3 + 1067*x^4 + 10284*x^5 + 106200*x^6 +...
where 2+x = 2*A(x) + A(x)^3 - A(x)^4.
-
CoefficientList[1+InverseSeries[Series[2*x-x*(1+x)^3,{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*sum(m=0,n,(A^3-1+x*O(x^n))^m));polcoeff(A,n)}
-
{a(n)=local(A=1+serreverse(2*x-x*(1+x)^3+x^2*O(x^n)));polcoeff(A,n)}
A192947
G.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^4 - 1)^n.
Original entry on oeis.org
1, 1, 4, 38, 444, 5805, 81284, 1192144, 18078660, 281172017, 4460264072, 71886775636, 1173832034804, 19377733213699, 322866234066016, 5422493523853024, 91701823351874276, 1560232214582865621, 26688686144512908492
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 38*x^3 + 444*x^4 + 5805*x^5 +...
where (A(x) - 1)*(2 - A(x)^4) = x
and A(x - 4*x^2 - 6*x^3 - 4*x^4 - x^5) = 1 + x.
Related expansions.
(A(x)^4-1) = 4*x + 22*x^2 + 204*x^3 + 2377*x^4 + 31036*x^5 +...
(A(x)^4-1)^2 = 16*x^2 + 176*x^3 + 2116*x^4 + 27992*x^5 +...
(A(x)^4-1)^3 = 64*x^3 + 1056*x^4 + 15600*x^5 + 232456*x^6 +...
(A(x)^4-1)^4 = 256*x^4 + 5632*x^5 + 98688*x^6 + 1640576*x^7 +...
-
CoefficientList[1+InverseSeries[Series[2*x-x*(1+x)^4,{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*sum(m=0,n,(A^4-1+x*O(x^n))^m));polcoeff(A,n)}
-
{a(n)=local(A=1+serreverse(2*x-x*(1+x)^4+x^2*O(x^n)));polcoeff(A,n)}
A192948
G.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^5 - 1)^n.
Original entry on oeis.org
1, 1, 5, 60, 885, 14605, 258126, 4778340, 91460415, 1795377600, 35946770255, 731245323256, 15070729457030, 314011160190675, 6603561278126200, 139980599432879480, 2987856960226960551, 64162892863813071450, 1385270621375211268550
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 60*x^3 + 885*x^4 + 14605*x^5 +...
where (A(x) - 1)*(2 - A(x)^5) = x
and A(x - 5*x^2 - 10*x^3 - 10*x^4 - 5*x^5 - x^6) = 1 + x.
Related expansions.
(A(x)^5-1) = 5*x + 35*x^2 + 410*x^3 + 6030*x^4 + 99376*x^5 +...
(A(x)^5-1)^2 = 25*x^2 + 350*x^3 + 5325*x^4 + 89000*x^5 +...
(A(x)^5-1)^3 = 125*x^3 + 2625*x^4 + 49125*x^5 + 925625*x^6 +...
(A(x)^5-1)^4 = 625*x^4 + 17500*x^5 + 388750*x^6 + 8177500*x^7 +...
-
CoefficientList[1+InverseSeries[Series[2*x-x*(1+x)^5,{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 17 2013 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*sum(m=0,n,(A^5-1+x*O(x^n))^m));polcoeff(A,n)}
-
{a(n)=local(A=1+serreverse(2*x-x*(1+x)^5+x^2*O(x^n)));polcoeff(A,n)}
A232192
G.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^n - 1)^n.
Original entry on oeis.org
1, 1, 1, 5, 44, 519, 7590, 132347, 2689046, 62644234, 1651650774, 48731341965, 1592908456996, 57173688136781, 2235773294509565, 94608603077007214, 4306708055122614542, 209823573154587335730, 10892496561736261641371, 600171728539156939466278
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 5*x^3 + 44*x^4 + 519*x^5 + 7590*x^6 + 132347*x^7 + 2689046*x^8 + 62644234*x^9 + 1651650774*x^10 +...
where
A(x) = 1 + x + x*(A(x)-1) + x*(A(x)^2-1)^2 + x*(A(x)^3-1)^3 + x*(A(x)^4-1)^4 + x*(A(x)^5-1)^5 + x*(A(x)^6-1)^6 + x*(A(x)^7-1)^7 +...
Also,
A(x) = 1 + x/2 + x*A(x)/(1 + A(x))^2 + x*A(x)^4/(1 + A(x)^2)^3 + x*A(x)^9/(1 + A(x)^3)^4 + x*A(x)^16/(1 + A(x)^4)^5 + x*A(x)^25/(1 + A(x)^5)^6 + ...
-
{a(n)=local(A=1+x); for(i=1, n, A=1+x*sum(m=0, n, (A^m-1+x*O(x^n))^m)); polcoeff(A, n)}
for(n=0,20,print1(a(n),", "))
A192949
E.g.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^2 - 1)^n/n!.
Original entry on oeis.org
1, 1, 4, 42, 704, 16300, 482112, 17366776, 737738752, 36109329552, 2001104000000, 123856655495584, 8468525621182464, 633915692700252352, 51562270240172425216, 4528439794201950000000, 427082984690083973562368, 43049504748861000404766976
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 42*x^3/3! + 704*x^4/4! + 16300*x^5/5! +...
where (A(x) - 1)/exp(A(x)^2-1) = x.
Related expansions.
(A(x)^2-1) = 2*x + 10*x^2/2! + 108*x^3/3! + 1840*x^4/4! + 43000*x^5/5! +...
(A(x)^2-1)^2 = 8*x^2/2! + 120*x^3/3! + 2328*x^4/4! + 58400*x^5/5! +...
(A(x)^2-1)^3 = 48*x^3/3! + 1440*x^4/4! + 43920*x^5/5! +...
(A(x)^2-1)^4 = 384*x^4/4! + 19200*x^5/5! + 846720*x^6/6! +...
-
CoefficientList[1 + InverseSeries[Series[x/E^(2*x + x^2), {x, 0, 20}], x],x]*Range[0, 20]! (* Vaclav Kotesovec, Feb 26 2014 *)
-
{a(n)=local(A=1+serreverse(x/exp(2*x+x^2+x^2*O(x^n))));n!*polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*exp(A^2-1+x*O(x^n)));n!*polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*sum(m=0,n,(A^2-1+x*O(x^n))^m/m!));n!*polcoeff(A,n)}
Showing 1-5 of 5 results.
Comments