A192952 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 2, 7, 16, 33, 62, 111, 192, 325, 542, 895, 1468, 2397, 3902, 6339, 10284, 16669, 27002, 43723, 70780, 114561, 185402, 300027, 485496, 785593, 1271162, 2056831, 3328072, 5384985, 8713142, 14098215, 22811448, 36909757, 59721302, 96631159
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 4*F(n+2)-(3*n+4)); # G. C. Greubel, Jul 12 2019
-
Magma
F:=Fibonacci; [4*F(n+2)-(3*n+4): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + 3n - 2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192746 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192952 *) (* Second program *) With[{F=Fibonacci}, Table[4*F[n+2]-(3*n+4), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; 4*f(n+2)-(3*n+4)) \\ G. C. Greubel, Jul 12 2019
-
Sage
f=fibonacci; [4*f(n+2)-(3*n+4) for n in (0..40)] # G. C. Greubel, Jul 12 2019
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
From R. J. Mathar, May 08 2014: (Start)
G.f.: x*(1 -x +3*x^2)/((1-x-x^2)*(1-x)^2).
a(n) - a(n-1) = A192746(n-2). (End)
a(n) = 4*Fibonacci(n+2) - (3*n+4). - G. C. Greubel, Jul 12 2019
Comments