A192960 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
1, 3, 7, 15, 29, 53, 93, 159, 267, 443, 729, 1193, 1945, 3163, 5135, 8327, 13493, 21853, 35381, 57271, 92691, 150003, 242737, 392785, 635569, 1028403, 1664023, 2692479, 4356557, 7049093, 11405709, 18454863, 29860635, 48315563, 78176265
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 2*F(n+4)-(2*n+5)); # G. C. Greubel, Jul 12 2019
-
Magma
F:=Fibonacci; [2*F(n+4)-(2*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n - 1, x] + n^2 + 2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192960 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192961 *) (* Second program *) With[{F=Fibonacci}, Table[2*F[n+4]-(2*n+5), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; 2*f(n+4)-(2*n+5)) \\ G. C. Greubel, Jul 12 2019
-
Sage
f=fibonacci; [2*f(n+4)-(2*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
From R. J. Mathar, May 09 2014: (Start)
G.f.: (1+x)*(1-x+x^2)/((1-x-x^2)*(1-x)^2).
a(n) - a(n-1) = A019274(n+2). (End)
a(n) = 2*Fibonacci(n+4) - (2*n + 5). - G. C. Greubel, Jul 12 2019
Comments