A192964 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined at Comments.
1, 0, 3, 7, 16, 31, 57, 100, 171, 287, 476, 783, 1281, 2088, 3395, 5511, 8936, 14479, 23449, 37964, 61451, 99455, 160948, 260447, 421441, 681936, 1103427, 1785415, 2888896, 4674367, 7563321, 12237748, 19801131, 32038943, 51840140, 83879151
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> F(n+3) +3*F(n+1) -2*(n+2)); # G. C. Greubel, Jul 11 2019
-
Magma
F:=Fibonacci; [F(n+3) +3*F(n+1) -2*(n+2): n in [0..40]]; // G. C. Greubel, Jul 11 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] + n(n-1); Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192964 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192965 *) (* Second program *) With[{F=Fibonacci}, Table[F[n+3]+3*F[n+1] -2*(n+2), {n,0,40}]] (* G. C. Greubel, Jul 11 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; f(n+3)+3*f(n+1)-2*(n+2)) \\ G. C. Greubel, Jul 11 2019
-
Sage
f=fibonacci; [f(n+3) +3*f(n+1) -2*(n+2) for n in (0..40)] # G. C. Greubel, Jul 11 2019
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1 -3*x +5*x^2 -x^3)/((1-x-x^2)*(1-x)^2). - R. J. Mathar, May 11 2014
a(n) = Fibonacci(n+3) + 3*Fibonacci(n+1) - 2*(n+2). - G. C. Greubel, Jul 11 2019
Comments