A192968 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 1, 3, 7, 16, 33, 64, 118, 210, 364, 619, 1038, 1723, 2839, 4653, 7597, 12370, 20103, 32626, 52900, 85716, 138826, 224773, 363852, 588901, 953053, 1542279, 2495683, 4038340, 6534429, 10573204, 17108098, 27681798, 44790424, 72472783
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
List([0..40], n-> 3*Fibonacci(n+2) -(n^2+3*n+6)/2); # G. C. Greubel, Jul 11 2019
-
Magma
[3*Fibonacci(n+2) -(n^2+3*n+6)/2: n in [0..40]]; // G. C. Greubel, Jul 11 2019
-
Mathematica
Table[3*Fibonacci[n+2] -(n^2+3*n+6)/2, {n, 0, 40}] (* G. C. Greubel, Jul 11 2019 *)
-
PARI
vector(40, n, n--; 3*fibonacci(n+2) -(n^2+3*n+6)/2) \\ G. C. Greubel, Jul 11 2019
-
Sage
[3*fibonacci(n+2) -(n^2+3*n+6)/2 for n in (0..40)] # G. C. Greubel, Jul 11 2019
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1 -3*x +4*x^2 -x^3)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 11 2014
a(n) = 3*Fibonacci(n+2) -(n^2+3*n+6)/2. - G. C. Greubel, Jul 11 2019
Comments