cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192969 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

1, 2, 6, 12, 23, 41, 71, 120, 200, 330, 541, 883, 1437, 2334, 3786, 6136, 9939, 16093, 26051, 42164, 68236, 110422, 178681, 289127, 467833, 756986, 1224846, 1981860, 3206735, 5188625, 8395391, 13584048, 21979472, 35563554, 57543061, 93106651
Offset: 0

Views

Author

Clark Kimberling, Jul 13 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + n(n+3)/2, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232 and A192744.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> 2*F(n+2)+3*F(n+1)-n-4); # G. C. Greubel, Jul 11 2019
  • Magma
    F:=Fibonacci; [2*F(n+2)+3*F(n+1)-n-4: n in [0..40]]; // G. C. Greubel, Jul 11 2019
    
  • Maple
    F:= gfun:-rectoproc({a(0) = 1, a(1) = 2, a(n) = 1 + n + a(n-1) + a(n-2)},a(n),remember):
    map(F, [$0..100]); # Robert Israel, Jan 18 2016
  • Mathematica
    (* First progream *)
    q = x^2; s = x + 1; z = 40;
    p[0, x] := 1;
    p[n_, x_] := x*p[n - 1, x] + n (n + 3)/2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192969 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192970 *)
    (* Second program *)
    Table[2*Fibonacci[n+2]+3*Fibonacci[n+1]-n-4, {n,0,40}] (* G. C. Greubel, Jul 11 2019 *)
  • PARI
    vector(40, n, n--; f=fibonacci; 2*f(n+2)+3*f(n+1)-n-4) \\ G. C. Greubel, Jul 11 2019
    
  • Sage
    f=fibonacci; [2*f(n+2)+3*f(n+1)-n-4 for n in (0..40)] # G. C. Greubel, Jul 11 2019
    
  • Sidef
    func a((0)) { 1 }
    func a((1)) { 2 }
    func a(n) is cached { 1 + n + a(n-1) + a(n-2) }
    100.times { |i| say a(i-1) }
    # Daniel Suteu, Jan 12 2016
    

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1 - x + 2*x^2 - x^3)/((1-x-x^2)*(1-x)^2). - R. J. Mathar, May 11 2014
a(0) = 1; a(1) = 2; a(n) = 1 + n + a(n-1) + a(n-2). - Daniel Suteu, Jan 12 2016
a(n) = 2*Fibonacci(n+2) + 3*Fibonacci(n+1) - n - 4. - G. C. Greubel, Jul 11 2019