A192969 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
1, 2, 6, 12, 23, 41, 71, 120, 200, 330, 541, 883, 1437, 2334, 3786, 6136, 9939, 16093, 26051, 42164, 68236, 110422, 178681, 289127, 467833, 756986, 1224846, 1981860, 3206735, 5188625, 8395391, 13584048, 21979472, 35563554, 57543061, 93106651
Offset: 0
Keywords
Links
- Daniel Suteu, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 2*F(n+2)+3*F(n+1)-n-4); # G. C. Greubel, Jul 11 2019
-
Magma
F:=Fibonacci; [2*F(n+2)+3*F(n+1)-n-4: n in [0..40]]; // G. C. Greubel, Jul 11 2019
-
Maple
F:= gfun:-rectoproc({a(0) = 1, a(1) = 2, a(n) = 1 + n + a(n-1) + a(n-2)},a(n),remember): map(F, [$0..100]); # Robert Israel, Jan 18 2016
-
Mathematica
(* First progream *) q = x^2; s = x + 1; z = 40; p[0, x] := 1; p[n_, x_] := x*p[n - 1, x] + n (n + 3)/2; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192969 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192970 *) (* Second program *) Table[2*Fibonacci[n+2]+3*Fibonacci[n+1]-n-4, {n,0,40}] (* G. C. Greubel, Jul 11 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; 2*f(n+2)+3*f(n+1)-n-4) \\ G. C. Greubel, Jul 11 2019
-
Sage
f=fibonacci; [2*f(n+2)+3*f(n+1)-n-4 for n in (0..40)] # G. C. Greubel, Jul 11 2019
-
Sidef
func a((0)) { 1 } func a((1)) { 2 } func a(n) is cached { 1 + n + a(n-1) + a(n-2) } 100.times { |i| say a(i-1) } # Daniel Suteu, Jan 12 2016
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1 - x + 2*x^2 - x^3)/((1-x-x^2)*(1-x)^2). - R. J. Mathar, May 11 2014
a(0) = 1; a(1) = 2; a(n) = 1 + n + a(n-1) + a(n-2). - Daniel Suteu, Jan 12 2016
a(n) = 2*Fibonacci(n+2) + 3*Fibonacci(n+1) - n - 4. - G. C. Greubel, Jul 11 2019
Comments