A192976 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
0, 1, 2, 10, 29, 70, 148, 289, 534, 950, 1645, 2794, 4680, 7761, 12778, 20930, 34157, 55598, 90332, 146577, 237630, 385006, 623517, 1009490, 1634064, 2644705, 4280018, 6926074, 11207549, 18135190, 29344420, 47481409, 76827750, 124311206
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 4*F(n+4)+3*F(n+2)-(2*n^2+8*n+15)); # G. C. Greubel, Jul 24 2019
-
Magma
[Fibonacci(n+4)+3*Lucas(n+3)-(2*n^2+8*n+15): n in [0..40]]; // G. C. Greubel, Jul 24 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] +2*n^2 -1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192975 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192976 *) (* Additional programs *) Table[Fibonacci[n+4]+3*LucasL[n+3] -(2*n^2+8*n+15), {n,0,40}] (* G. C. Greubel, Jul 24 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; 4*f(n+4)+3*f(n+2) -(2*n^2 + 8*n + 15)) \\ G. C. Greubel, Jul 24 2019
-
Sage
f=fibonacci; [4*f(n+4)+3*f(n+2) -(2*n^2+8*n+15) for n in (0..40)] # G. C. Greubel, Jul 24 2019
Formula
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5).
G.f.: x*(1-2*x+7*x^2-2*x^3)/((1-x-x^2)*(1-x)^3). - R. J. Mathar, May 11 2014
a(n) = Fibonacci(n+4) + 3*Lucas(n+3) - (2*n^2 + 8*n + 15). - G. C. Greubel, Jul 24 2019
Comments