A192979 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.
1, 1, 4, 9, 19, 36, 65, 113, 192, 321, 531, 872, 1425, 2321, 3772, 6121, 9923, 16076, 26033, 42145, 68216, 110401, 178659, 289104, 467809, 756961, 1224820, 1981833, 3206707, 5188596, 8395361, 13584017, 21979440, 35563521, 57543027, 93106616
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> 2*F(n+3)+F(n+1) -2*(n+2)); # G. C. Greubel, Jul 24 2019
-
Magma
[Fibonacci(n+3)+Lucas(n+2)-2*(n+2): n in [0..40]]; // G. C. Greubel, Jul 24 2019
-
Mathematica
(* First program *) q = x^2; s = x + 1; z = 40; p[0, x]:= 1; p[n_, x_]:= x*p[n-1, x] +n^2-n+1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192979 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192980 *) (* Additional programs *) Table[Fibonacci[n+3]+LucasL[n+2] -2*(n+2), {n,0,40}] (* G. C. Greubel, Jul 24 2019 *)
-
PARI
vector(40, n, n--; f=fibonacci; 2*f(n+3)+f(n+1) -2*(n+2)) \\ G. C. Greubel, Jul 24 2019
-
Sage
f=fibonacci; [2*f(n+3)+f(n+1) -2*(n+2) for n in (0..40)] # G. C. Greubel, Jul 24 2019
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: (1-2*x+3*x^2)/((1-x)^2*(1-x-x^2)). - Colin Barker, May 11 2014
a(n) = Fibonacci(n+3) + Lucas(n+2) - 2*(n+2). - G. C. Greubel, Jul 24 2019
Comments