A193002 Triangle T(n,k)=0 (k odd), T(0,0)=-3, T(n,0)=1 (n > 0) and T(n,k) = T(n-1,k) - T(n-2,k-2).
-3, 1, 0, 1, 0, 3, 1, 0, 2, 0, 1, 0, 1, 0, -3, 1, 0, 0, 0, -5, 0, 1, 0, -1, 0, -6, 0, 3, 1, 0, -2, 0, -6, 0, 8, 0, 1, 0, -3, 0, -5, 0, 14, 0, -3, 1, 0, -4, 0, -3, 0, 20, 0, -11, 0, 1, 0, -5, 0, 0, 0, 25, 0, -25, 0, 3, 1, 0, -6
Offset: 0
Examples
Triangle begins -3; 1, 0; 1, 0, 3; 1, 0, 2, 0; 1, 0, 1, 0, -3; 1, 0, 0, 0, -5, 0; 1, 0, -1, 0, -6, 0, 3; 1, 0, -2, 0, -6, 0, 8, 0; 1, 0, -3, 0, -5, 0, 14, 0, -3; 1, 0, -4, 0, -3, 0, 20, 0, -11, 0;
Crossrefs
Cf. A174559.
Programs
-
Maple
BB := proc(m,n) if m=0 then if n= 0 then 3 ; else -1; end if; else (3*m-n)*binomial(n+m-1,n)/m ; end if; end proc: A193002 := proc(n,k) if type(k,'odd') then 0; else (-1)^(1+k/2)*BB(k/2,n-k) ; end if; end proc: seq(seq(A193002(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Aug 30 2011
Formula
Sum_{k=0..n} T(n,k) = A130806(n+5). (row sums)
Sum_{k=0..n} (-1)^(k/2)*T(n,k) = -A000032(n-2). (alternating row sums)
T(n,k) = (-1)^(1+k/2)*BB(k/2,n-k). - R. J. Mathar, Aug 30 2011
T(n,2k) = (-1)^(1+k)*(5-n/k)*binomial(n-k-1,k-1), k > 0. - R. J. Mathar, Aug 30 2011
Comments