cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193021 G.f.: A(x) = 1/(1 - x*(1+x)/(1 - x^2*(1+x)/(1 - x^3*(1+x)/(1 - x^4*(1+x)/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 42, 93, 205, 453, 1003, 2221, 4918, 10892, 24126, 53442, 118384, 262248, 580946, 1286953, 2850965, 6315712, 13991153, 30994539, 68662111, 152107038, 336962513, 746472721, 1653660451, 3663352982, 8115423952, 17978094917
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 19*x^5 + 42*x^6 +...
which satisfies A(x) = P(x)/Q(x) where
P(x) = 1 - x^2*(1+x)/(1-x) + x^6*(1+x)^2/((1-x)*(1-x^2)) - x^12*(1+x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^20*(1+x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) +...
Q(x) = 1 - x*(1+x)/(1-x) + x^4*(1+x)^2/((1-x)*(1-x^2)) - x^9*(1+x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^16*(1+x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) +...
Explicitly, the above series begin:
P(x) = 1 - x^2 - 2*x^3 - 2*x^4 - 2*x^5 - x^6 + x^7 + 3*x^8 + 5*x^9 + 7*x^10 + 9*x^11 + 10*x^12 + 9*x^13 + 7*x^14 + 4*x^15 - x^16 - 7*x^17 - 14*x^18 +...
Q(x) = 1 - x - 2*x^2 - 2*x^3 - x^4 + x^5 + 3*x^6 + 5*x^7 + 7*x^8 + 8*x^9 + 7*x^10 + 5*x^11 + 2*x^12 - 3*x^13 - 9*x^14 - 16*x^15 - 24*x^16 - 30*x^17 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^Range[nmax + 1]*(1+x)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    /* As a continued fraction: */
    {a(n)=local(A=1+x, CF); CF=1+x; for(k=0, n, CF=1/(1-x^(n-k+1)*(1+x)*CF+x*O(x^n))); A=CF; polcoeff(A, n)}
    
  • PARI
    /* By Ramanujan's continued fraction identity: */
    {a(n)=local(A=1+x, P, Q); for(i=1, n,
    P=sum(m=0, sqrtint(n), x^(m*(m+1))/prod(k=1, m, 1-x^k)*(-1-x+x*O(x^n))^m);
    Q=sum(m=0, sqrtint(n), x^(m^2)/prod(k=1, m, 1-x^k)*(-1-x+x*O(x^n))^m); A=P/Q); polcoeff(A, n)}

Formula

G.f.: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (x^(n*(n+1)) * (-1-x)^n / Product_{k=1..n} (1-x^k)),
Q(x) = Sum_{n>=0} (x^(n^2) * (-1-x)^n / Product_{k=1..n} (1-x^k)),
due to Ramanujan's continued fraction identity.
a(n) ~ c * d^n, where d = 2.2152996327586394990264647692065917932114805328469811... and c = 0.35183326334197478337804661003215013650248042019243949..., d = 1/r, where r = 0.451406204927110926742870001969351624948735236137... is the lowest root of the equation Q(r) = 0. - Vaclav Kotesovec, Aug 25 2017, updated Sep 24 2020