A193024 The number of isomorphism classes of Alexander (a.k.a. affine) quandles of order n.
1, 1, 2, 3, 4, 2, 6, 7, 11, 4, 10, 6, 12, 6, 8, 23, 16, 11, 18, 12, 12, 10, 22, 14, 39, 12, 45, 18, 28, 8, 30, 48, 20, 16, 24, 33, 36, 18, 24, 28, 40, 12, 42, 30, 44, 22, 46, 46, 83, 39, 32, 36, 52, 45, 40, 42, 36, 28, 58, 24, 60, 30, 66, 167, 48, 20, 66, 48
Offset: 1
Keywords
Links
- W. Edwin Clark, Table of n, a(n) for n = 1..255
- W. E. Clark, M. Elhamdadi, M. Saito and T. Yeatman, Quandle Colorings of Knots and Applications, arXiv preprint arXiv:1312.3307 [math.GT], 2013-2014.
- M. Elhamdadi, Distributivity in Quandles and Quasigroups, arXiv preprint arXiv:1209.6518 [math.RA], 2012. - From _N. J. A. Sloane_, Dec 29 2012
- Xiang-dong Hou, Finite Modules over Z[t,t^{-1}], arXiv:1107.2076 [math.RA], 2011.
- S. Nelson, Classification of Finite Alexander Quandles, arXiv:math/0202281 [math.GT], 2002-2003.
- S. Nelson, Alexander Quandles of Order 16s, arXiv:math/0409460 [math.GT], 2004-2006.
- Wikipedia, Racks and Quandles
Crossrefs
See Index to OEIS under quandles.
Programs
-
GAP
findY:=function(f,g) local Y,y; Y:=[]; for y in g do Add(Y,Image(f,y^(-1))*y); od; Y:=Set(Y); return Subgroup(g,Y); end;; Alex:=[];;k:=8;; for nn in [1..2^k-1] do Alex[nn]:=0; od; for n in [1..2^k-1] do LGn:=AllSmallGroups(n,IsAbelian); for g in LGn do autg:=AutomorphismGroup(g);; eautg:=List(ConjugacyClasses(autg),Representative); for f in eautg do N2:=findY(f,g); MM:= ((Size(g)^2)/Size(N2)); for nn in [1..2^k-1] do if nn mod MM = 0 then Alex[nn]:=Alex[nn]+1; fi; od; od; od; od; for nn in [1..2^k-1] do Print(Alex[nn], ","); od;;
Comments