cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193036 G.f. A(x) satisfies: x = Sum_{n>=1} x^n*A(-x)^A006519(n), where A006519(n) is the highest power of 2 dividing n.

Original entry on oeis.org

1, 1, 1, 3, 10, 34, 112, 382, 1352, 4884, 17856, 66022, 246764, 930878, 3538788, 13542716, 52133416, 201746212, 784378792, 3062431132, 12001867312, 47197716460, 186187480816, 736582735738, 2921679555340, 11617001425938, 46294191726972, 184866924629832
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2011

Keywords

Comments

Compare the g.f. to a g.f. C(x) of the Catalan numbers: x = Sum_{n>=1} x^n*C(-x)^(2*n-1).

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 10*x^4 + 34*x^5 + 112*x^6 + ...
The g.f. satisfies:
x = x*A(-x) + x^2*A(-x)^2 + x^3*A(-x) + x^4*A(-x)^4 + x^5*A(-x) + x^6*A(-x)^2 + x^7*A(-x) + x^8*A(-x)^8 + x^9*A(-x) + ... + x^n * A(-x)^A006519(n) + ...
where A006519 begins: [1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,16,1,2,1,4,...].
The g.f. also satisfies:
x = x*A(-x)/(1-x^2) + x^2*A(-x)^2/(1-x^4) + x^4*A(-x)^4/(1-x^8) + x^8*A(-x)^8/(1-x^16) + x^16*A(-x)^16/(1-x^32) + x^32*A(-x)^32/(1-x^64) + ...
Related table.
The table of coefficients in A(-x)^(2^n) / (1 - x^(2*2^n)) begins:
n=0: [1, -1, 2, -4, 12, -38, 124, -420, 1476, -5304,  ...];
n=1: [1, -2, 3, -8, 28, -96, 324, -1124, 4024, -14684,  ...];
n=2: [1, -4, 10, -28, 95, -344, 1244, -4512, 16616, -62072, ...];
n=3: [1, -8, 36, -136, 514, -2008, 7924, -31176, 122495, ...];
n=4: [1, -16, 136, -848, 4500, -22032, 103480, -473520, ...];
n=5: [1, -32, 528, -6048, 54632, -418720, 2855088, ...];
n=6: [1, -64, 2080, -45888, 775120, -10720576, 126777952, ...];
n=7: [1, -128, 8256, -358016, 11750304, -311550592, 6955997376, ...];
...
where x = Sum_{n>=0} x^(2^n) * A(-x)^(2^n) / (1 - x^(2*2^n)).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]);for(i=1,n,A=concat(A,0);A[#A]=polcoeff(sum(m=1,#A,(-x)^m*Ser(A)^(2^valuation(m,2))),#A));if(n<0,0,A[n+1])}

Formula

G.f. satisfies: x = Sum_{n>=0} x^(2^n) * A(-x)^(2^n) / (1 - x^(2*2^n)).