cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A193039 G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n*A(-x)^A002024(n+1), where A002024 is defined as "n appears n times.".

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 34, 91, 251, 709, 2035, 5913, 17366, 51483, 153858, 463001, 1401751, 4266619, 13048709, 40078032, 123570957, 382331356, 1186699353, 3694028136, 11529606672, 36073811897, 113123222246, 355485228001, 1119275386080, 3530531671842
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2011

Keywords

Comments

Compare the g.f. to a g.f. C(x) of the Catalan numbers: 1 = Sum_{n>=0} x^n*C(-x)^(2*n+1).

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 34*x^6 + 91*x^7 +...
The g.f. satisfies:
1 = A(-x) + x*A(-x)^2 + x^2*A(-x)^2 + x^3*A(-x)^3 + x^4*A(-x)^3 + x^5*A(-x)^3 + x^6*A(-x)^4 +...+ x^n*A(-x)^A002024(n+1) +...
where A002024 begins: [1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,...].
The g.f. also satisfies:
1-x = (1-x)*A(-x) + x*(1-x^2)*A(-x)^2 + x^3*(1-x^3)*A(-x)^3 + x^6*(1-x^4)*A(-x)^4 + x^10*(1-x^5)*A(-x)^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]);for(i=1,n,A=concat(A,0);A[#A]=polcoeff(sum(m=1,#A,(-x)^m*Ser(A)^floor(sqrt(2*m)+1/2) ),#A));if(n<0,0,A[n+1])}

Formula

G.f. satisfies: 1-x = Sum_{n>=1} x^(n*(n-1)/2) * (1-x^n) * A(-x)^n.

A193040 G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n*A(-x)^A131507(n), where A131507 is defined as "2*n+1 appears n times.".

Original entry on oeis.org

1, 1, 2, 7, 29, 129, 600, 2889, 14293, 72228, 371208, 1934236, 10194853, 54258010, 291175463, 1573878211, 8560931357, 46825444031, 257386132988, 1421034475176, 7876770462043, 43817869686744, 244552276036950, 1368945007588648, 7683977372121530
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2011

Keywords

Comments

Compare the g.f. to a g.f. C(x) of the Catalan numbers: 1 = Sum_{n>=0} x^n*C(-x)^(2*n+1).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 129*x^5 + 600*x^6 +...
The g.f. satisfies:
1 = A(-x) + x*A(-x)^3 + x^2*A(-x)^3 + x^3*A(-x)^5 + x^4*A(-x)^5 + x^5*A(-x)^5 + x^6*A(-x)^7 +...+ x^n*A(-x)^A131507(n) +...
where A131507 begins: [1,3,3,5,5,5,7,7,7,7,9,9,9,9,9,11,...].
The g.f. also satisfies:
1-x = (1-x)*A(-x) + x*(1-x^2)*A(-x)^3 + x^3*(1-x^3)*A(-x)^5 + x^6*(1-x^4)*A(-x)^7 + x^10*(1-x^5)*A(-x)^9 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]);for(i=1,n,A=concat(A,0);A[#A]=polcoeff(sum(m=1,#A,(-x)^m*Ser(A)^(2*floor(sqrt(2*m)+1/2)-1) ),#A));if(n<0,0,A[n+1])}

Formula

G.f. satisfies: 1-x = Sum_{n>=1} x^(n*(n-1)/2)* (1-x^n)* A(-x)^(2*n-1).

A193036 G.f. A(x) satisfies: x = Sum_{n>=1} x^n*A(-x)^A006519(n), where A006519(n) is the highest power of 2 dividing n.

Original entry on oeis.org

1, 1, 1, 3, 10, 34, 112, 382, 1352, 4884, 17856, 66022, 246764, 930878, 3538788, 13542716, 52133416, 201746212, 784378792, 3062431132, 12001867312, 47197716460, 186187480816, 736582735738, 2921679555340, 11617001425938, 46294191726972, 184866924629832
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2011

Keywords

Comments

Compare the g.f. to a g.f. C(x) of the Catalan numbers: x = Sum_{n>=1} x^n*C(-x)^(2*n-1).

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 10*x^4 + 34*x^5 + 112*x^6 + ...
The g.f. satisfies:
x = x*A(-x) + x^2*A(-x)^2 + x^3*A(-x) + x^4*A(-x)^4 + x^5*A(-x) + x^6*A(-x)^2 + x^7*A(-x) + x^8*A(-x)^8 + x^9*A(-x) + ... + x^n * A(-x)^A006519(n) + ...
where A006519 begins: [1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,16,1,2,1,4,...].
The g.f. also satisfies:
x = x*A(-x)/(1-x^2) + x^2*A(-x)^2/(1-x^4) + x^4*A(-x)^4/(1-x^8) + x^8*A(-x)^8/(1-x^16) + x^16*A(-x)^16/(1-x^32) + x^32*A(-x)^32/(1-x^64) + ...
Related table.
The table of coefficients in A(-x)^(2^n) / (1 - x^(2*2^n)) begins:
n=0: [1, -1, 2, -4, 12, -38, 124, -420, 1476, -5304,  ...];
n=1: [1, -2, 3, -8, 28, -96, 324, -1124, 4024, -14684,  ...];
n=2: [1, -4, 10, -28, 95, -344, 1244, -4512, 16616, -62072, ...];
n=3: [1, -8, 36, -136, 514, -2008, 7924, -31176, 122495, ...];
n=4: [1, -16, 136, -848, 4500, -22032, 103480, -473520, ...];
n=5: [1, -32, 528, -6048, 54632, -418720, 2855088, ...];
n=6: [1, -64, 2080, -45888, 775120, -10720576, 126777952, ...];
n=7: [1, -128, 8256, -358016, 11750304, -311550592, 6955997376, ...];
...
where x = Sum_{n>=0} x^(2^n) * A(-x)^(2^n) / (1 - x^(2*2^n)).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]);for(i=1,n,A=concat(A,0);A[#A]=polcoeff(sum(m=1,#A,(-x)^m*Ser(A)^(2^valuation(m,2))),#A));if(n<0,0,A[n+1])}

Formula

G.f. satisfies: x = Sum_{n>=0} x^(2^n) * A(-x)^(2^n) / (1 - x^(2*2^n)).

A193038 G.f. A(x) satisfies: x = Sum_{n>=1} x^n*A(-x)^sigma(n), where sigma(n) = sum of divisors of n (A000203).

Original entry on oeis.org

1, 1, 2, 6, 23, 101, 475, 2321, 11629, 59364, 307648, 1614724, 8567810, 45890927, 247817187, 1347819147, 7376472346, 40594360200, 224500075274, 1247028876157, 6954322550810, 38921347036195, 218541728743211, 1230754878156173, 6950114772716368
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2011

Keywords

Comments

Compare the g.f. to a g.f. C(x) of the Catalan numbers: x = Sum_{n>=1} x^n*C(-x)^(2*n-1).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + 101*x^5 + 475*x^6 +...
The g.f. satisfies:
x = x*A(-x) + x^2*A(-x)^3 + x^3*A(-x)^4 + x^4*A(-x)^7 + x^5*A(-x)^6 + x^6*A(-x)^12 +...+ x^n*A(-x)^A000203(n) +...
where A000203 begins: [1,3,4,7,6,12,8,15,13,18,12,28,14,24,24,31,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]);for(i=1,n,A=concat(A,0);A[#A]=polcoeff(sum(m=1,#A,(-x)^m*Ser(A)^sigma(m)),#A));if(n<0,0,A[n+1])}
Showing 1-4 of 4 results.