cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193050 G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n*A(-x)^A003059(n+1), where A003059 is defined by "n appears 2n-1 times.".

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 38, 87, 204, 489, 1191, 2938, 7328, 18448, 46809, 119583, 307324, 793965, 2060770, 5371156, 14051901, 36887289, 97131351, 256488187, 679046184, 1802047427, 4792800096, 12773166908, 34106055493, 91228795961, 244427136822, 655900969465
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2011

Keywords

Comments

Compare the g.f. to a g.f. C(x) of the Catalan numbers: 1 = Sum_{n>=0} x^n*C(-x)^(2*n+1).

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 17*x^6 + 38*x^7 +...
The g.f. satisfies:
1 = A(-x) + x*A(-x)^2 + x^2*A(-x)^2 + x^3*A(-x)^2 + x^4*A(-x)^3 + x^5*A(-x)^3 + x^6*A(-x)^3 + x^7*A(-x)^3 + x^8*A(-x)^3 + x^9*A(-x)^4 +...+ x^n*A(-x)^A003059(n+1) +...
where A003059 begins: [1, 2,2,2, 3,3,3,3,3, 4,4,4,4,4,4,4, 5,...].
The g.f. also satisfies:
1-x = (1-x)*A(-x) + x*(1-x^3)*A(-x)^2 + x^4*(1-x^5)*A(-x)^3 + x^9*(1-x^7)*A(-x)^4 + x^16*(1-x^9)*A(-x)^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(sum(m=1, #A, (-x)^m*Ser(A)^(1+sqrtint(m-1)) ), #A)); if(n<0, 0, A[n+1])}

Formula

G.f. satisfies: 1-x = Sum_{n>=1} x^(n^2) * (1 - x^(2*n-1)) * A(-x)^n.