A193067 The number of isomorphism classes of connected Alexander (a.k.a. indecomposable affine) quandles of order n.
1, 0, 1, 1, 3, 0, 5, 2, 8, 0, 9, 1, 11, 0, 3, 9, 15, 0, 17, 3, 5, 0, 21, 2, 34, 0, 30, 5, 27, 0, 29, 8, 9, 0, 15, 8, 35, 0, 11, 6, 39, 0, 41, 9, 24, 0, 45, 9, 76, 0, 15, 11, 51, 0, 27, 10, 17, 0, 57, 3, 59, 0, 40, 61, 33, 0, 65, 15, 21, 0, 69, 16, 71, 0, 34
Offset: 1
Keywords
Links
- W. Edwin Clark, Table of n, a(n) for n = 1..255
- W. Edwin Clark, M. Elhamdadi, M. Saito, and T. Yeatman, Quandle Colorings of Knots and Applications, arXiv preprint arXiv:1312.3307 [math.GT], 2013-2014.
- S. Nelson, Classification of Finite Alexander Quandles, arXiv:math/0202281 [math.GT], 2002-2003.
- S. Nelson, Alexander Quandles of Order 16, arXiv:math/0409460 [math.GT], 2004-2006.
- K. Toyoda, On axioms of linear functions, Proceedings of the Imperial Academy 17/7(1941), 221-227.
- Wikipedia, Medial magma
- Index entries for sequences related to quandles and racks
Programs
-
GAP
findY:=function(f,g) local Y,y; Y:=[]; for y in g do Add(Y,Image(f,y^(-1))*y); od; Y:=Set(Y); return Subgroup(g,Y); end;; CA:=[];; k:=8;; for n in [1..2^k-1] do CA[n]:=0; LGn:=AllSmallGroups(n,IsAbelian); for g in LGn do autg:=AutomorphismGroup(g);; eautg:=List(ConjugacyClasses(autg),Representative); for f in eautg do N2:=findY(f,g); if Size(N2) = n then CA[n]:=CA[n]+1; fi; od; od; for j in [1..k] do if n = 2^j and n <> 2^(j-1) then Print("done to ",n, "\n"); fi; od; od; for n in [1..2^k-1] do Print(CA[n], ","); od;
Comments