A193108 The tetrahedral numbers A000292 mod 10.
1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9, 0, 0, 0
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
Table[Mod[Binomial[n+2,3],10],{n,1,21}]
Formula
a(n) = a(n-20).
G.f. -x*(1+4*x+5*x^4+6*x^5+4*x^6+5*x^8+6*x^10+4*x^11+5*x^12+6*x^15+9*x^16) / ( (x-1)*(1+x^4+x^3+x^2+x)*(1+x)*(1-x+x^2-x^3+x^4)*(1+x^2)*(x^8-x^6+x^4-x^2+1) ). - R. J. Mathar, Oct 25 2011
a(n) = 55 -a(n-1) -a(n-2) … -a(n-18) -a(n-19). - Ant King, Oct 19 2012
Extensions
Edited by N. J. A. Sloane, Jul 16 2011
Comments