cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193127 Numbers of spanning trees of the antiprism graphs.

Original entry on oeis.org

2, 36, 384, 3528, 30250, 248832, 1989806, 15586704, 120187008, 915304500, 6900949462, 51599794176, 383142771674, 2828107288188, 20768716848000, 151840963183392, 1105779284582146, 8024954790380544, 58059628319357318, 418891171182561000, 3014678940049375872, 21646865272061272716
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2011

Keywords

Comments

Antiprism graphs are defined for n>=3; extended to n=1 using closed form.

Crossrefs

Cf. A056854.

Programs

  • Mathematica
    Table[2 n (GoldenRatio^(4 n) + GoldenRatio^(-4 n) - 2)/5, {n, 20}] // Round
    LinearRecurrence[{16, -80, 130, -80, 16, -1}, {2, 36, 384, 3528, 30250, 248832}, 20]
    CoefficientList[Series[(2 (1 + 2 x - 16 x^2 + 2 x^3 + x^4))/((-1 + x)^2 (1 - 7 x + x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 28 2018 *)
    Table[2 n (LucasL[4 n] - 2)/5, {n, 20}] (* Eric W. Weisstein, Mar 28 2018 *)
  • PARI
    a(n)=my(x=quadgen(5)^n); real(2*n*(x^4+x^-4-2)/5) \\ Charles R Greathouse IV, Dec 17 2013

Formula

a(n) = 2/5*n*(phi^(4*n) + phi^(-4*n) - 2), where phi is the golden ratio.
a(n) = +16*a(n-1)-80*a(n-2)+130*a(n-3)-80*a(n-4)+16*a(n-5)-a(n-6).
O.g.f.: (2*x*(1 + 2*x - 16*x^2 + 2*x^3 + x^4))/((-1 + x)^2*(1 - 7*x + x^2)^2).
5*a(n) = 2*n*(A056854(n) - 2). - Eric W. Weisstein, Mar 28 2018