A193127 Numbers of spanning trees of the antiprism graphs.
2, 36, 384, 3528, 30250, 248832, 1989806, 15586704, 120187008, 915304500, 6900949462, 51599794176, 383142771674, 2828107288188, 20768716848000, 151840963183392, 1105779284582146, 8024954790380544, 58059628319357318, 418891171182561000, 3014678940049375872, 21646865272061272716
Offset: 1
Links
- Stefano Spezia, Table of n, a(n) for n = 1..1100
- Zbigniew R. Bogdanowicz, The number of spanning trees in a superprism, Discrete Math. Lett. 13 (2024) 66-73. See p. 66.
- Eric Weisstein's World of Mathematics, Antiprism Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- Index entries for linear recurrences with constant coefficients, signature (16,-80,130,-80,16,-1).
Crossrefs
Cf. A056854.
Programs
-
Mathematica
Table[2 n (GoldenRatio^(4 n) + GoldenRatio^(-4 n) - 2)/5, {n, 20}] // Round LinearRecurrence[{16, -80, 130, -80, 16, -1}, {2, 36, 384, 3528, 30250, 248832}, 20] CoefficientList[Series[(2 (1 + 2 x - 16 x^2 + 2 x^3 + x^4))/((-1 + x)^2 (1 - 7 x + x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 28 2018 *) Table[2 n (LucasL[4 n] - 2)/5, {n, 20}] (* Eric W. Weisstein, Mar 28 2018 *)
-
PARI
a(n)=my(x=quadgen(5)^n); real(2*n*(x^4+x^-4-2)/5) \\ Charles R Greathouse IV, Dec 17 2013
Formula
a(n) = 2/5*n*(phi^(4*n) + phi^(-4*n) - 2), where phi is the golden ratio.
a(n) = +16*a(n-1)-80*a(n-2)+130*a(n-3)-80*a(n-4)+16*a(n-5)-a(n-6).
O.g.f.: (2*x*(1 + 2*x - 16*x^2 + 2*x^3 + x^4))/((-1 + x)^2*(1 - 7*x + x^2)^2).
5*a(n) = 2*n*(A056854(n) - 2). - Eric W. Weisstein, Mar 28 2018
Comments