A193140 Number of isonemal satins of exact period n.
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 0, 0, 3, 0, 1, 1, 1, 1, 0, 1, 3, 1, 1, 0, 3, 1, 0, 1, 1, 3, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 0, 3, 0, 1, 0, 3, 3, 0, 1, 3, 1, 1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 0, 3, 3, 1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 1, 7
Offset: 2
Keywords
References
- B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
Links
- B. Grünbaum and G. C. Shephard, Satins and twills: an introduction to the geometry of fabrics, Math. Mag., 53 (1980), 139-161. See Theorem 5, page 152.
Programs
-
Maple
#A193138 U:=proc(n) local j,p3,i,t1,t2,al,even; t1:=ifactors(n)[2]; t2:=nops(t1); if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi; j:=t2-even; p3:=0; for i from 1 to t2 do if t1[i][1] mod 4 = 3 then p3:=1; fi; od: if (al >= 2) or (p3=1) then RETURN(0) else RETURN(2^(j-1)); fi; end; #A193139: V:=proc(n) local j,i,t1,t2,al,even; t1:=ifactors(n)[2]; t2:=nops(t1); if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi; j:=t2-even; if (al <= 1) then RETURN(2^(j-1)-1); fi; if (al = 2) then RETURN(2^j-1); fi; if (al >= 3) then RETURN(2^(j+1)-1); fi; end; #A193140: [seq(U(n)+V(n), n=3..120)];
-
Mathematica
a[n_] := 2^With[{f = FactorInteger[n]}, Length@f - If[ f[[1, 1]] == 2 && f[[1, 2]] > 1, Boole[f[[1, 2]] == 2], Boole[f[[1, 1]] == 2] + Boole[AnyTrue[f[[;; , 1]], Mod[#, 4] == 3 &]] ]] - 1; Table[a[n], {n, 2, 100}] (* Andrey Zabolotskiy, Mar 21 2021 *)
Formula
a(n) = A086669(n) - 1. - Andrey Zabolotskiy, Dec 25 2018
Extensions
a(2) = 0 prepended and name edited by Andrey Zabolotskiy, Mar 21 2021
Comments