cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193140 Number of isonemal satins of exact period n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 0, 0, 3, 0, 1, 1, 1, 1, 0, 1, 3, 1, 1, 0, 3, 1, 0, 1, 1, 3, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 0, 3, 0, 1, 0, 3, 3, 0, 1, 3, 1, 1, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 0, 3, 3, 1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 1, 7
Offset: 2

Views

Author

N. J. A. Sloane, Jul 16 2011

Keywords

Comments

On page 153 of Grünbaum and Shephard (1980) is Table 3 which is a list of all the (n,s)-satins with n<=100. - Michael Somos, Dec 05 2014

References

  • B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

Crossrefs

Programs

  • Maple
    #A193138
    U:=proc(n) local j,p3,i,t1,t2,al,even;
    t1:=ifactors(n)[2];
    t2:=nops(t1);
    if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
    j:=t2-even;
    p3:=0;
    for i from 1 to t2 do if t1[i][1] mod 4 = 3 then p3:=1; fi; od:
    if (al >= 2) or (p3=1) then RETURN(0) else RETURN(2^(j-1)); fi;
    end;
    #A193139:
    V:=proc(n) local j,i,t1,t2,al,even;
    t1:=ifactors(n)[2];
    t2:=nops(t1);
    if (n mod 2) = 0 then even:=1; al:=t1[1][2]; else even:=0; al:=0; fi;
    j:=t2-even;
    if (al <= 1) then RETURN(2^(j-1)-1); fi;
    if (al = 2) then RETURN(2^j-1); fi;
    if (al >= 3) then RETURN(2^(j+1)-1); fi;
    end;
    #A193140:
    [seq(U(n)+V(n), n=3..120)];
  • Mathematica
    a[n_] := 2^With[{f = FactorInteger[n]}, Length@f - If[
      f[[1, 1]] == 2 && f[[1, 2]] > 1,
      Boole[f[[1, 2]] == 2],
      Boole[f[[1, 1]] == 2] + Boole[AnyTrue[f[[;; , 1]], Mod[#, 4] == 3 &]]
    ]] - 1;
    Table[a[n], {n, 2, 100}]
    (* Andrey Zabolotskiy, Mar 21 2021 *)

Formula

a(n) = A086669(n) - 1. - Andrey Zabolotskiy, Dec 25 2018

Extensions

a(2) = 0 prepended and name edited by Andrey Zabolotskiy, Mar 21 2021