cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193143 Primes which are the sum of 5 distinct positive squares in more than one way.

Original entry on oeis.org

103, 127, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 229, 239, 241, 251, 263, 271, 277, 281, 283, 307, 311, 313, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491
Offset: 1

Views

Author

Keywords

Comments

All terms from 103 onwards in A068229 are primes which are the sum of 5 distinct positive squares in more than one way.

Examples

			103 = 1^2 + 2^2 + 3^2 + 5^2 + 8^2 = 2^2 + 3^2 + 4^2 + 5^2 + 7^2.
127 = 1^2 + 2^2 + 3^2 + 7^2 + 8^2 = 1^2 + 4^2 + 5^2 + 6^2 + 7^2 = 1^2 + 2^2 + 4^2 + 5^2 + 9^2.
		

Crossrefs

Programs

  • Mathematica
    sum5sqP = {}; Do[Do[Do[Do[Do[p = a^2 + b^2 + c^2 + d^2 + e^2; If[PrimeQ[p], AppendTo[sum5sqP, p]], {e, d - 1, 1, -1}], {d, c - 1, 1, -1}], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 6, 30}]; a = Take[Sort[sum5sqP], 1000]; a = Select[Table[If[a[[n]] == a[[n - 1]] && a[[n]] != a[[n - 2]], a[[n]], ""], {n, 3, Length[a]}], IntegerQ]