A193143 Primes which are the sum of 5 distinct positive squares in more than one way.
103, 127, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 229, 239, 241, 251, 263, 271, 277, 281, 283, 307, 311, 313, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491
Offset: 1
Keywords
Examples
103 = 1^2 + 2^2 + 3^2 + 5^2 + 8^2 = 2^2 + 3^2 + 4^2 + 5^2 + 7^2. 127 = 1^2 + 2^2 + 3^2 + 7^2 + 8^2 = 1^2 + 4^2 + 5^2 + 6^2 + 7^2 = 1^2 + 2^2 + 4^2 + 5^2 + 9^2.
Programs
-
Mathematica
sum5sqP = {}; Do[Do[Do[Do[Do[p = a^2 + b^2 + c^2 + d^2 + e^2; If[PrimeQ[p], AppendTo[sum5sqP, p]], {e, d - 1, 1, -1}], {d, c - 1, 1, -1}], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 6, 30}]; a = Take[Sort[sum5sqP], 1000]; a = Select[Table[If[a[[n]] == a[[n - 1]] && a[[n]] != a[[n - 2]], a[[n]], ""], {n, 3, Length[a]}], IntegerQ]
Comments