cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193199 G.f.: A(x) = Sum_{n>=0} x^n/(1 - 4^n*x)^n.

Original entry on oeis.org

1, 1, 5, 49, 1025, 42241, 3610625, 609251329, 210923290625, 144320565411841, 201501092228890625, 556475188311619534849, 3125896980250691972890625, 34751531654955460673195212801, 784223845648499469575195012890625
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 49*x^3 + 1025*x^4 + 42241*x^5 +...
where:
A(x) = 1 + x/(1-4*x) + x^2/(1-16*x)^2 + x^3/(1-64*x)^3 + x^4/(1-256*x)^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1);A=1+sum(m=1,n,x^m/(1-4^m*x +x*O(x^n))^m);polcoeff(A,n)}
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*4^(k*(n-k))))}

Formula

a(n) = Sum_{k=0..n-1} binomial(n-1,k)*4^(k*(n-k)) for n>0 with a(0)=1.