A193199 G.f.: A(x) = Sum_{n>=0} x^n/(1 - 4^n*x)^n.
1, 1, 5, 49, 1025, 42241, 3610625, 609251329, 210923290625, 144320565411841, 201501092228890625, 556475188311619534849, 3125896980250691972890625, 34751531654955460673195212801, 784223845648499469575195012890625
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 5*x^2 + 49*x^3 + 1025*x^4 + 42241*x^5 +... where: A(x) = 1 + x/(1-4*x) + x^2/(1-16*x)^2 + x^3/(1-64*x)^3 + x^4/(1-256*x)^4 +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..80
Programs
-
PARI
{a(n)=local(A=1);A=1+sum(m=1,n,x^m/(1-4^m*x +x*O(x^n))^m);polcoeff(A,n)}
-
PARI
{a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*4^(k*(n-k))))}
Formula
a(n) = Sum_{k=0..n-1} binomial(n-1,k)*4^(k*(n-k)) for n>0 with a(0)=1.