A193211 Decimal expansion of the value of r that maximizes the Brahmagupta expression sqrt((-1+r+r^2+r^3)*(1-r+r^2+r^3)*(1+r-r^2+r^3)*(1+r+r^2-r^3))/4.
1, 6, 5, 3, 7, 4, 5, 5, 1, 5, 0, 7, 7, 7, 7, 1, 9, 2, 9, 7, 0, 7, 9, 0, 6, 2, 3, 8, 3, 6, 6, 4, 5, 9, 7, 1, 4, 5, 6, 6, 2, 2, 3, 0, 7, 0, 2, 5, 1, 8, 4, 1, 6, 9, 2, 7, 0, 1, 1, 0, 5, 2, 0, 2, 9, 4, 6, 5, 6, 8, 6, 4, 8, 0, 8, 8, 3, 1, 8, 2, 7, 2, 1, 5, 6, 9, 3, 1, 5, 1, 6, 5, 0, 1, 3, 9, 8, 5, 9, 5, 7, 8, 9
Offset: 1
Examples
1.653745515077771929707906238366459714566223...
Links
- Wikipedia, Brahmagupta's formula.
Programs
-
Maple
Digits:=200; fsolve( -3*r^10+5*r^8+2*r^6+18*r^4+r^2+1, r ); # N. J. A. Sloane, Jan 14 2019
-
Mathematica
RealDigits[r/.NMaximize[{Sqrt[(-1+r+r^2+r^3)(1-r+r^2+r^3)(1+r-r^2+r^3)(1+r+r^2-r^3)]/4,3/5
120, PrecisionGoal->100, WorkingPrecision->240][[2]]][[1]] RealDigits[r/.FindRoot[1+r^2+18r^4+2r^6+5r^8-3r^10==0,{r,2}, WorkingPrecision -> 120]][[1]] (* Harvey P. Dale, Jan 14 2019 *)
Formula
r is the positive real root of the equation 1 + r^2 + 18*r^4 + 2*r^6 + 5*r^8 - 3*r^10 = 0. (Corrected by N. J. A. Sloane, Jan 14 2019. Thanks to Harvey P. Dale for pointing that the old expression was incorrect.)
Extensions
First Mathematica program fixed by Harvey P. Dale, Sep 10 2011
Second Mathematica program added by Harvey P. Dale, Jan 14 2019
Comments