A193215 Number of Dyck paths of semilength n having the property that the heights of the first and the last peaks coincide.
1, 2, 3, 6, 14, 38, 113, 356, 1164, 3906, 13364, 46426, 163294, 580316, 2080475, 7515038, 27324014, 99920756, 367264130, 1356043388, 5027345564, 18706888196, 69841532210, 261545298848, 982175296016, 3697785571820, 13954630170720, 52776659865348, 200006396351216, 759386612309146, 2888310863702017
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- K. Baur and V. Mazorchuk, Combinatorial analogues of ad-nilpotent ideals for untwisted affine Lie algebras, arXiv:1108.3659 [math.RA], 2011.
Programs
-
Maple
for n from 1 by 1 to 100 do 1+sum(binomial(2*n-2-2*k, n-1-k)-binomial(2*n-2-2*k, n-1-2*k), k = 1 .. n-1) end do
-
Mathematica
Table[1+Sum[Binomial[2*n-2-2*k, n-1-k]-Binomial[2*n-2-2*k, n-1-2*k],{k,1,n-1}],{n,1,20}] (* Vaclav Kotesovec, Mar 21 2014 *)
-
PARI
a(n)=1+sum(k=1,n-1,binomial(2*n-2-2*k, n-1-k)-binomial(2*n-2-2*k, n-1-2*k));
Formula
a(n) = 1 + Sum_{i=1..n-1} A000958(i).
Recurrence: 2*n*(5*n-11)*a(n) = 3*(15*n^2 - 53*n + 40)*a(n-1) - 3*(5*n^2 - 21*n + 20)*a(n-2) - 2*(2*n-5)*(5*n-6)*a(n-3). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ 5*4^n/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
Comments