cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193215 Number of Dyck paths of semilength n having the property that the heights of the first and the last peaks coincide.

Original entry on oeis.org

1, 2, 3, 6, 14, 38, 113, 356, 1164, 3906, 13364, 46426, 163294, 580316, 2080475, 7515038, 27324014, 99920756, 367264130, 1356043388, 5027345564, 18706888196, 69841532210, 261545298848, 982175296016, 3697785571820, 13954630170720, 52776659865348, 200006396351216, 759386612309146, 2888310863702017
Offset: 1

Views

Author

Volodymyr Mazorchuk, Aug 26 2011

Keywords

Comments

a(n+1) - a(n) = A000958(n) (this reduces to David Callan's comment on A000958(n) from Aug 23 2011).
The sequence gives the trace of the matrix describing the statistics of Dyck paths of semilength n with respect to the heights of the first and the last peaks, see the paper of Baur and Mazorchuk.

Programs

  • Maple
    for n from 1 by 1 to 100 do 1+sum(binomial(2*n-2-2*k, n-1-k)-binomial(2*n-2-2*k, n-1-2*k), k = 1 .. n-1) end do
  • Mathematica
    Table[1+Sum[Binomial[2*n-2-2*k, n-1-k]-Binomial[2*n-2-2*k, n-1-2*k],{k,1,n-1}],{n,1,20}] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    a(n)=1+sum(k=1,n-1,binomial(2*n-2-2*k, n-1-k)-binomial(2*n-2-2*k, n-1-2*k));

Formula

a(n) = 1 + Sum_{i=1..n-1} A000958(i).
Recurrence: 2*n*(5*n-11)*a(n) = 3*(15*n^2 - 53*n + 40)*a(n-1) - 3*(5*n^2 - 21*n + 20)*a(n-2) - 2*(2*n-5)*(5*n-6)*a(n-3). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ 5*4^n/(27*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014